Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hạ băng
Xem chi tiết
Nguyễn Phúc Trường An
Xem chi tiết
Ly Thảo
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2022 lúc 14:42

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

Di Thiên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2017 lúc 4:55

Đáp án C

Phương pháp:

phương trình trở thành

=> Hàm số đồng biến trên khoảng [2;+∞)

Để phương trình (*) có nghiệm thì 2m ≥ 6 ⇔ m ≥ 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 5 2018 lúc 7:01

Đáp án B

Nguyễn Đình Hữu
Xem chi tiết
missing you =
24 tháng 11 2021 lúc 22:37

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

Đặng Thanh
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 10:27

\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2019 lúc 14:15

Đáp án C.

Bất phương trình ⇔ log 2 5 x - 1 1 + log 2 5 x - 1 ≥ m  

Đặt  t = log 2 5 x - 1 , do x ≥ 1 ⇒ t ∈ [ 2 ; + ∞ )  

Bất phương trình t 2 + t ≥ m ⇔ f ( t ) ≥ m  

Với  f ( t ) = t 2 + t , f ' ( t ) = 2 t + 1 > 0  với  t ∈ [ 2 ; + ∞ ) nên hàm số f ( t ) đồng biến nên min ( t ) = f ( 2 ) = 6  

Do đó theo bài ra để bất phương trình có nghiệm  x ≥ 1  thì m ≤ min   f ( t ) ⇔ m ≤ 6