Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tìm tất cả các giá trị thực của tham số m để bất phương trình  log 2 5 x - 1 . log 2 2 . 5 x - 2 ≥ m  có nghiệm  x ≥ 1

A. m ≥ 6

B. m > 6

C.  m ≤ 6

D.  m < 6

Cao Minh Tâm
9 tháng 8 2019 lúc 14:15

Đáp án C.

Bất phương trình ⇔ log 2 5 x - 1 1 + log 2 5 x - 1 ≥ m  

Đặt  t = log 2 5 x - 1 , do x ≥ 1 ⇒ t ∈ [ 2 ; + ∞ )  

Bất phương trình t 2 + t ≥ m ⇔ f ( t ) ≥ m  

Với  f ( t ) = t 2 + t , f ' ( t ) = 2 t + 1 > 0  với  t ∈ [ 2 ; + ∞ ) nên hàm số f ( t ) đồng biến nên min ( t ) = f ( 2 ) = 6  

Do đó theo bài ra để bất phương trình có nghiệm  x ≥ 1  thì m ≤ min   f ( t ) ⇔ m ≤ 6  


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết