Trong mặt phẳng với hệ trục tọa độ Oxy; phương trình (E) đi qua điểm M 0 ; 3 , N 3 ; - 12 5 là:
A. x 2 6 + y 2 3 = 1
B. x 2 25 + y 2 9 = 1
C. x 2 5 + y 2 3 = 1
D. x 2 36 + y 2 9 = 1
Trong mặt phẳng với hệ trục tọa độ Oxy, cho 2 điểm A91;2) và B(4;3). Tìm tọa độ điểm M trên trục hoành sao cho góc AMB bằng 45 độ.
Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)
Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)
\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))
\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)
\(\Leftrightarrow x=1;x=5\)
Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) cắt trục Oz tại điểm có cao độ bằng 2 và song song với mặt phẳng (Oxy). Phương trình cửa mặt phẳng (P) là
A. (P): z - 2 = 0
B. (P): x - 2 = 0
C. (P): y + z - 2 = 0
D. (P): x - y - 2 = 0
Mặt phẳng cần tìm (P) đi qua M(0;0;2) và nhận k → = 0 , 0 , 1 làm một VTPT nên có phương trình (P): z - 2 = 0
Chọn A.
Trong mặt phẳng với hệ trục tọa độ Oxy, phép đối xứng qua trục Ox biến điểm I − 3 ; 7 thành điểm nào dưới đây?
A. I 1 3 ; − 7
B. I 2 - 3 ; 7
C. I 3 3 ; 7
D. I 4 - 3 ; − 7
Đáp án D.
Phép đối xứng qua trục Ox biến điểm M a ; b thành điểm M ' a ; − b .
Phân tích phương án nhiễu:
Phương án A: HS nhầm lần với phép đối xứng qua tâm O.
Phương án B: HS nhầm lẫn với phép quay tâm O với góc quay 360°.
Phương án C: HS nhầm lần với phép đối xứng qua trục Oy.
Trong không gian với hệ tọa độ Oxy cho mặt phẳng α : 2 x - y - 3 z = 4 . Gọi A ,B ,C lần lượt là giao điểm của mặt phẳng α với các trục tọa độ Ox, Oy, Oz. Thể tích tứ diện OABC bằng:
A. 1.
B. 2.
C. 32 9
D. 16 9
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.
gọi Pt đường thảng .....y=ax+b(d)
d đi qua M(-1,1) 1=-a+b⇔b=a+1
gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)
d cắt Oy tại \(B\left(O,b\right)\)
\(\Delta AOB\) vuông cân tại o
\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)
\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)
(do d cắt 2 trục tọa độ nên a,b≠0)
vậy PtT đg thảng d:y=x+2
Gọi pt đường thẳng có dạng \(y=ax+b\)
Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)
\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)
Thay tọa độ M vào phương trình ta được:
\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)
Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của Elip có trục lớn gấp đôi trục bé và có tiêu cự bằng 4 3
A. x 2 36 + y 2 9 = 1
B. x 2 24 + y 2 6 = 1
C. x 2 36 + y 2 24 = 1
D. x 2 16 + y 2 4 = 1
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;-1;4). Gọi H là hình chiếu vuông góc của M lên mặt phẳng (Oxy). Tọa độ điểm H là:
A. H(0;-1;0)
B. H(0;-1;4)
C. H(2;-1;0)
D. H(2;0;4).
Đáp án C
Hình chiếu vuông góc của M(2;-1;4) lên mặt phẳng (Oxy) là điểm H(2;-1;0).
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có độ dài trục lớn bằng 12 và độ dài trục bé bằng 6. Phương trình
nào sau đây là phương trình của elip (E) .
A. x 2 144 + y 2 36 = 1
B. x 2 9 + y 2 36 = 1
C. x 2 36 + y 2 9 = 1
D. x 2 144 + y 2 36 = 0
Phương trình chính tắc của elip có dạng : E x 2 a 2 + y 2 b 2 = 1 ( a , b > 0 )
Ta có :
+ Độ dài trục lớn là 12 nên 2a= 12 => a= 6 .
+ Độ dài trục bé là 6 nên 2b = 6 => b= 3
Vậy phương trình của Elip là: x 2 36 + y 2 9 = 1 .
Chọn C.