Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Adu vip

Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.

ミ★ήɠọς τɾίếτ★彡
18 tháng 8 2021 lúc 15:05

gọi Pt đường thảng .....y=ax+b(d)

d đi qua M(-1,1)   1=-a+b⇔b=a+1

gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)

d cắt Oy tại \(B\left(O,b\right)\)

\(\Delta AOB\) vuông cân tại o

\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)

\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)

(do d cắt 2 trục tọa độ nên a,b≠0)

vậy PtT đg thảng d:y=x+2

Nguyễn Việt Lâm
18 tháng 8 2021 lúc 15:14

Gọi pt đường thẳng có dạng \(y=ax+b\)

Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)

\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)

Thay tọa độ M vào phương trình ta được:

\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)


Các câu hỏi tương tự
Đặng Việt Hùng
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Ngọc Mai
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Thuyền nhỏ Drarry
Xem chi tiết
Thuyền nhỏ Drarry
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết