.B2. Tìm BCNN, rồi tìm các bội chung của các số sau: a. 24; 63 và 252.
Bài 2. Tìm BCNN, rồi tìm các bội chung của các số sau: a) 15 và 18; b) 24; 63 và 252.<GẤP>☆☆
1. Tìm ƯCLN rồi tìm tập các ước chung (là số tự nhiên) của các số: 60 và 88.
2. Tìm BCNN rồi tìm tập các bội chung (là số tự nhiên) của các số: 24, 30 và 40.
Giúp em với, em cảm ơn.
Bài 1:
60= 22.3.5 ; 88 = 23.11
ƯCLN(60;88)= 22 = 4
ƯC(60;88)=Ư(4)={1;2;4}
Bài 2:
24= 23.3 ; 30=2.3.5 ; 40 = 23.5
BCNN(24;30;40)=23.3.5= 120
BC(24;30;40)=B(120)={0;120;240;360;...}
a) Ta có BCNN(12, 16) = 48. Hãy viết tập hợp A các bội của 48. Nhận xét về tập hợp BC(12, 16) và tập hợp A.
b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của BCNN(a, b). Hãy vận dụng để tìm tập hợp các bội chung của:
i. 24 và 30; ii. 42 và 60;
iii. 60 và 150; iv. 28 và 35.
a) A = {0; 48; 96; 144, 192;...}
* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.
b)
i. 24 = 23.3; 30 = 2.3.5
=> BCNN(24,30) = 23. 3.5= 120
=> BC(24, 30) = B(120) = {0; 120; 240; 360;...}
ii. 42 = 2.3.7; 60 = 22.3.5
=> BCNN(42, 60) = 420
=> BC(42, 60) = B(420) = {0; 420, 840; 1260;…}.
iii. 60 = 22.3.5
150 = 2.3.52
=> BCNN(60, 150) = 22.3.52 = 300
=> BC(60, 150) = B(300) = {0; 300, 600, 900, 1200;...}.
iv. 28 = 22.7; 35 = 5.7
=> BCNN(28, 35) = 22.5.7 = 140
=> BC(28, 35) = B(140) = {0; 140; 280; 420, 560;...}.
bài 8
a)Tìm các bội chung của 7;9;6 thông qua tìm BCNN (Bội Chung Nhỏ Nhất)
b)Tìm các bội chung của 8;12;15 thông qua tìm BCNN
Bài 9 Tìm BCNN của
a) 15;18 e) 33;44;55
b) 8;18;30 f) 10;12
c) 4;14;26 g) 24;10
d) 6;8;10 h) 84;108
Mình cảm ơn!
`8)`
`a)` `->` ta được BCNN `(7;9;6)=126`
`->` từ đó ta có được BC `(7;9;6)={0;126;252;...}`
`b)` `->` ta được BCNN `(8;12;15)=120`
`->` từ đó ta được BC `(8;12;15)={0;120;240;...}`
`9)`
`a)->` BCNN `(15;18)=90`
`e)->` BCNN`(33;44;55)=660`
`b)->` BCNN`(8;18;30)=360`
`f)->` BCNN`(10;12)=60`
`c)->` BCNN `(4;14;26)=364`
`g)->` BCNN `(24;10)=210`
`d)->` BCNN `(6;8;10)=120`
2 bài này khá dài khi giải ra nên mik chỉ giảng cách tính thôi:
Bước 1: Phân tích từng số ra tích các thừa số nguyên tố.
Bước 2: Tìm BCNN bằng cách nhân các thừa số nguyên tố với nhau với số mũ lớn nhất (nếu có chung)
a) Viết các tập hợp:Ư(5); Ư(10); Ư(15); ƯC(5; 10;15) B(5); B(10); B(15); BC(5; 10).
b) Tìm ƯCLN rồi tìm các ước chung của: 120 và 180
c) Tìm BCNN rồi tìm các bội chung của: 20 và 50
a)
Ư(5) = {1; -1; 5; -5}
Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}
ƯC(5; 10; 15) = {1; -1; 5; -5}
B(5) = {0; 5; -5; 10; -10...}
B(10) = {0; 10; -10; 20; -20...}
B(15) = {0; 15; -15; 30; -30...}
BC(5; 10) = {0; 10; -10; 20; -20...}
b)
120; 180
120 = \(2^3\). 3 . 5
180 = \(2^2\). \(3^2\). 5
\(\Rightarrow\)ƯCLN(120; 180) = \(2^2\). 3 . 5 = 4 . 3 . 5 = 60
\(\Rightarrow\)ƯC(120; 180) = Ư(60) = {1; -1; 2; -2; 3; -3; 4; -4; 5; -5; 6; -6; 10; -10; 20; -20; 30; -30; 60; -60}
c)
20; 50
20 = \(2^2\). 5
50 = 2 . \(5^2\)
\(\Rightarrow\)BCNN(20; 50) = \(2^2\). \(5^2\)= 4 . 25 = 100
\(\Rightarrow\)BC(20; 50) = B(100) = {0; 100; -100; 200; -200...}
ok nhé!
: a) Tìm các tập hợp B(6), B(9), B(12) , Ư(30), Ư(45), Ư(60)
b) Tìm ƯCLN(36, 48), ƯCLN(24; 28; 36);
c) Tìm BCNN(6,8), BCNN(8, 9, 72);
d) Tìm BCNN của 15 và 54. Từ đó, hãy tìm ra các bội chung nhỏ hơn 1000 của 15 và 54
Quan sát hai thanh sau:
a) Số 0 có phải là bội chung của 6 và 10 không? Vì sao?
b) Viết bốn bội chung của 6 và 10 theo thứ tự tăng dần.
c) Tìm BCNN(6, 10).
d) Tìm các bội chung của 6 và 10 mà nhỏ hơn 160.
a) Số 0 là bội chung của 6 và 10. Vì số 0 là bội của mọi số nguyên khác 0
b) Bốn bội chung của 6 và 10 theo thứ tự tăng dần là: 0, 30, 60, 90.
c) BCNN(6,10) = 30.
d) Các bội chung của 6 và 10 nhỏ hơn 160 là: 0, 30, 60, 90, 120, 150.
a) Ko . Vì bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất,được viết tắt là BCNN của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
b) Bốn bội chung của 6 và 10 theo thứ tự tăng dần là: 0, 30, 60, 90.
c) Ta có:
6=2.3
10= 2.5
=> BCNN( 10,6)= 2.3.5=30
d)d) Các bội chung của 6 và 10 nhỏ hơn 160 là: 0, 30, 60, 90, 120, 150.
a) Ko . Vì bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất,được viết tắt là BCNN của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
b) Bốn bội chung của 6 và 10 theo thứ tự tăng dần là: 0, 30, 60, 90.
c) Ta có:
6=2.3
10= 2.5
=> BCNN( 10,6)= 2.3.5=30
d)d) Các bội chung của 6 và 10 nhỏ hơn 160 là: 0, 30, 60, 90, 120, 150.
BCNN (60;80)=240
BC(60;80)=0;240;480;...
Có: 60 = 22 x 3 x 5
80 = 24 x 5
=> BCNN( 60; 80 ) = 24 x 3 x 5 = 240
=> BC( 60; 80 ) = B( 240 ) = { 0; 240; 480; 720; 960; ... }
a, Tìm các bội chung của 8; 12; 15 thông qua tìm BCNN.
Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:
BC (8; 12; 15) = {0; 120; 240;... }
Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:
BC (8; 12; 15) = {0; 120; 240;... }
8=2^3
12=2^2.4
15=3.5
BCNN(8;12;15)=2^3.3.4=96
BC(8;12;15)=B(96)={0;96;192;288;384;...}