Tìm x biết
a) 2 3 x − 4 7 = 1 8
b) 2 7 − 8 9 x = 2 3
Bài 1: Tìm x, biết
a) 3\(\dfrac{1}{3}\) x+ 16\(\dfrac{3}{4}\) = -13,25
b) 3\(\dfrac{2}{7}\).x - \(\dfrac{1}{8}\) = 2\(\dfrac{3}{4}\)
c) x : 4\(\dfrac{1}{3}\) = - 2,5
d) (\(\dfrac{3x}{7}\) + 1) : (-4) = \(\dfrac{-1}{28}\)
giúp em
`#040911`
`a)`
`3 1/3 x + 16 3/4 = -13,25`
`=> 3 1/3 x = -13,25 - 16 3/4`
`=> 3 1/3 x = -30`
`=> x = -30 \div 3 1/3`
`=> x =-9`
Vậy, `x = -9`
`b)`
`3 2/7*x - 1/8 = 2 3/4`
`=> 3 2/7x = 2 3/4 + 1/8`
`=> 3 2/7x = 23/8`
`=> x = 23/8 \div 3 2/7`
`=> x = 7/8`
Vậy, `x = 7/8`
`c)`
`x \div 4 1/3 = -2,5`
`=> x = -2,5 * 4 1/3`
`=> x = -65/6`
Vậy, `x = -65/6`
`d)`
`( (3x)/7 + 1) \div (-4) = (-1)/28`
`=> (3x)/7 +1 = (-1)/28 * (-4)`
`=> (3x)/7 + 1 = 1/7`
`=> (3x)/7 = 1/7 - 1`
`=> (3x)/7 = -6/7`
`=> 3x = -6`
`=> x = -6 \div 3`
`=> x = -2`
Vậy, `x = -2.`
a
=>10/3 . x + 16 + 3/4 = -13,25
=>10/3 x + 3/4 = -29,25
=>10/3 x = -30
=>x=-30 : 10/3
=>x=-30 . 3/10
=>x=-9
b.
=>23/7 x - 1/8 = = 11/4
=>23/7 x = 11/4 + 1/8
=>23/7 x= 22/8 + 1/8
=>23/7 x= 23/8
=>x=23/8 : 23/7
=>x=23/8 . 7/23
=>x=7/8
c.
=>x : 13/3 =-5/2
=>x=-5/2 . 13/3
=>x=-65/6
d.
=>3x/7 +1 = (-1/28) . (-4)
=>3x/7 + 1 = 1/7
=>3x/7 = -6/7
=>3x=-6
=>x=-2
a) \(3\dfrac{1}{3}x+16\dfrac{3}{4}=-13,25\)
\(\Rightarrow\dfrac{10}{3}x+\dfrac{67}{4}=-\dfrac{53}{4}\)
\(\Rightarrow\dfrac{10}{3}x=-30\)
\(\Rightarrow x=-30:\dfrac{10}{3}\)
\(\Rightarrow x=-9\)
b) \(3\dfrac{2}{7}x-\dfrac{1}{8}=2\dfrac{3}{4}\)
\(\Rightarrow\dfrac{23}{7}x-\dfrac{1}{8}=\dfrac{11}{4}\)
\(\Rightarrow\dfrac{23}{7}x=\dfrac{11}{4}+\dfrac{1}{8}\)
\(\Rightarrow\dfrac{23}{7}x=\dfrac{23}{8}\)
\(\Rightarrow x=\dfrac{23}{8}:\dfrac{23}{7}\)
\(\Rightarrow x=\dfrac{7}{8}\)
c) \(x:4\dfrac{1}{3}=-2,5\)
\(\Rightarrow x:\dfrac{13}{3}=-\dfrac{5}{2}\)
\(\Rightarrow x=-\dfrac{5}{2}\cdot\dfrac{13}{3}\)
\(\Rightarrow x=-\dfrac{65}{6}\)
d) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\Rightarrow\dfrac{3x}{7}+1=\dfrac{-1}{28}\cdot-4\)
\(\Rightarrow\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\Rightarrow\dfrac{3x}{7}=-\dfrac{6}{7}\)
\(\Rightarrow x=-\dfrac{6}{7}:\dfrac{3}{7}\)
\(\Rightarrow x=-2\)
Bài 1: Tìm x biết
a) (2x + 1)2 - 4(x + 2)2 = 9;
b) (x + 3)2 - (x - 4)( x + 8) = 1;
a: Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow-12x=24\)
hay x=-2
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\)
hay x=-20
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
tìm số tự nhiên x biết
a) 0 <x<1/4 + 4/5 b) 4/7 + 3/7 <x< 5/3 + 2/3
Lời giải:
a.
$0< x< \frac{1}{4}+\frac{4}{5}$
$\Rightarrow 0< x< \frac{21}{20}$ hay $0< x< 1,05$
$\Rightarrow x=1$
b.
$\frac{4}{7}+\frac{3}{7}< x< \frac{5}{3}+\frac{2}{3}$
$\Rightarrow 1< x< \frac{7}{3}$
$\Rightarrow x=2$
tìm số tự nhiên x biết
a) 0 <x<1/4 + 4/5 b) 4/7 + 3/7 <x< 5/3 + 2/3
3) tìm x biết
a) \(\sqrt{x+9}=7\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\)
lm nhanh giúp mk nhé mk đang cần gấp
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)
\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)
\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)
\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)
\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)
\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)
\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)
\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)
Câu 2: Tìm x biết
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a) \(\sqrt{\left(2x-3\right)^2}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)
\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)
\(\Leftrightarrow5\sqrt{x+2}=20\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
a. \(\sqrt{\left(2x-3\right)^2}=7\)
<=> \(\left|2x-3\right|=7\)
<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\) ĐK: \(x\ge-2\)
<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)
<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)
<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)
<=> \(5\sqrt{x+2}=20\)
<=> \(\sqrt{x+2}=4\)
<=> \(\left(\sqrt{x+2}\right)^2=4^2\)
<=> \(\left|x+2\right|=16\)
<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\) ĐK: \(x\ge3\)
<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)
<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)
a) I2x-3I=7
2x-3=7 =>x=5
2x-3=-7 =>x=-2
b) \(8\sqrt{3x}-5\sqrt{3x}+2\sqrt{3x}=20\)
5\(\sqrt{3x}=20\)
3x=16 =>x=16/3
c) vì câu c dài nên mình chỉ cho đáp án thôi là 0,3,6
vì \(\sqrt{ }\) của 1 số luôn dương nên 3,6 thỏa mãn
1) Tính bằng cách hợp lí:
a) -4/7 + 3/7 + -4/5 + 4/7 - 2334
b) 5/13 + 4/19 + -8/13 + 15/19 + 456
2) Tìm x biết
a) 3/7 - x = -11/14
b) x - 4/9 = -12/9 + 3/18
GIÚP MÌNH VỚI, MIK CẦN GẤP LẮM
1:
a: \(=\dfrac{-4}{7}+\dfrac{4}{7}+\dfrac{3}{7}-\dfrac{23}{34}-\dfrac{4}{5}=\dfrac{3}{7}-\dfrac{23}{34}-\dfrac{4}{5}=-\dfrac{1247}{1190}\)
b:
Sửa đề: \(\dfrac{-5}{13}+\dfrac{4}{19}+\dfrac{-8}{13}+\dfrac{15}{19}+\dfrac{45}{6}\)
\(=\dfrac{-5}{13}-\dfrac{8}{13}+\dfrac{4}{19}+\dfrac{15}{19}+\dfrac{45}{6}=\dfrac{9}{2}\)
Bài 1: Tìm x biết
a) 4\(\sqrt{2x-1}\) > 8
b)\(2\sqrt{x}-1>3\)
a) `4\sqrt(2x-1)>8`
`<=>\sqrt(2x-1)>2`
`<=>2x-1>4`
`<=>x>5/2`
b) `2\sqrtx-1>3`
`<=>2\sqrtx>4`
`<=>\sqrtx>2`
`<=>x>4`
a) Ta có: \(4\sqrt{2x-1}>8\)
\(\Leftrightarrow2x-1>4\)
\(\Leftrightarrow2x>5\)
hay \(x>\dfrac{5}{2}\)
b) Ta có: \(2\sqrt{x}-1>3\)
\(\Leftrightarrow\sqrt{x}>2\)
hay x>4
tìm x biết
a,-4x(x-5)-2x(8-2x)=-3
b.-7(x+9)-3(5-x)=2
Mong có kết quả sớm nhất
a: \(-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
=>\(-4x^2+20x-16x+4x^2=-3\)
=>4x=-3
=>\(x=-\dfrac{3}{4}\)
b: \(-7\left(x+9\right)-3\left(5-x\right)=2\)
=>\(-7x-63-15+3x=2\)
=>\(-4x-78=2\)
=>\(-4x=78+2=80\)
=>\(x=\dfrac{80}{-4}=-20\)