Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy Khang
Xem chi tiết
Minh Hiếu
5 tháng 2 2022 lúc 10:00

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Minh Hiếu
5 tháng 2 2022 lúc 19:39

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)

\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Nguyễn Quỳnh Chi
25 tháng 7 2022 lúc 20:56

Có câu trả lời là được mà

 

Minh Trác
Xem chi tiết
ANH LAN
Xem chi tiết
Trần Quốc Đạt
14 tháng 1 2017 lúc 17:32

Kiểm tra lại đề nha bạn. Chắc chắn là thiếu giả thiết rồi đó.

Yan Tuấn Official
Xem chi tiết
Dĩ dãng dơ dáy dễ gì giấ...
Xem chi tiết
Phương Twinkle
Xem chi tiết
bunt tear
Xem chi tiết
Akai Haruma
29 tháng 7 2021 lúc 23:18

Lời giải:
Gọi $M$ là trung điểm của $BC$. Do $BC$ cố định nên $M$ cố định.

Qua $G$ kẻ $GI\parallel AO$ với $I\in OM$

Theo Talet thì $\frac{GI}{AO}=\frac{MI}{MO}=\frac{GM}{MA}=\frac{1}{3}$
Mà $M,O$ cố định nên $I$ cố định.

$\frac{GI}{AO}=\frac{1}{3}\Rightarrow GI=\frac{AO}{3}=\frac{R}{3}$

Vậy trọng tâm $G$ luôn thuộc đường tròn $(I, \frac{R}{3})$ cố định.

 

Akai Haruma
29 tháng 7 2021 lúc 23:24

Hình vẽ:

Hiển Bùi
Xem chi tiết
Trung Anh
15 tháng 3 2022 lúc 21:42

lx

Hoàng Minh Hằng
15 tháng 3 2022 lúc 21:42

lỗi 

Nguyễn Thanh Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 23:09

2: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

BC=căn 6^2+8^2=10cm

=>OB=OC=10/2=5cm

S=5^2*3,14=78,5cm2

pham quang duy
Xem chi tiết