Xác định vị trí tương đối của 2 đường thẳng:
a : x = 3 + 5 t y = 1 - 3 t v à b : x = 2 + 3 t y = 1 - 7 t
A. Song song nhau.
B. Cắt nhau nhưng không vuông góc.
C. Vuông góc nhau.
D. Trùng nhau.
Bài 3: Cho 2 đường thẳng:
(d\(_1\)) : y = (a-1)x + 2 (a \(\ne\) 1)
(d\(_2\)) : y = (3-a)x + 1 (a \(\ne\) 3)
a) Tùy theo giá trị của tham số a, hãy xác định vị trí tương đối của (d\(_1\)) và (d\(_2\))
b) Nếu 2 đường thẳng cắt nhau, hãy xác định tọa độ giao điểm (theo a)
a: (d1) và (d2) cắt nhau khi \(a-1\ne3-a\)
=>\(2a\ne4\)
=>\(a\ne2\)
(d1)//(d2) khi \(\left\{{}\begin{matrix}a-1=3-a\\2< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a=4\\2< >1\left(đúng\right)\end{matrix}\right.\)
=>2a=4
=>a=2
Vì \(b_1=2\ne1=b_2\)
nên (d1) và (d2) không thể trùng nhau
b: Khi hai đường thẳng cắt nhau thì phương trình hoành độ giao điểm là:
\(\left(a-1\right)x+2=\left(3-a\right)x+1\)
=>\(\left(a-1-3+a\right)x=-1\)
=>\(\left(2a-4\right)x=-1\)
=>\(x=-\dfrac{1}{2a-4}\)
Khi \(x=-\dfrac{1}{2a-4}\) thì \(y=\left(a-1\right)\cdot\dfrac{-1}{2a-4}+2\)
\(=\dfrac{-a+1}{2a-4}+2\)
\(=\dfrac{-a+1+2\left(2a-4\right)}{2a-4}=\dfrac{3a-7}{2a-4}\)
vậy: Tọa độ giao điểm là \(A\left(-\dfrac{1}{2a-4};\dfrac{3a-7}{2a-4}\right)\)
xác định vị trí tương đối của 2 đường thẳng sau đây △1: x-2y+1=0; △2: -3x+6y-10=0
Xác định vị trí tương đối của hai đường thẳng d1: 2x - 3y + 2 = 0 và d2: 6x + 4y - 3 = 0
A. Song song
B. vuông góc
C. trùng nhau
D. cắt nhưng không vuông
Xác định vị trí tương đối của 2 đường thẳng sau đây: (d1): x- 2y+ 1=0 và (d2): -3x+ 6y-1 =0 .
A. Song song.
B. Trùng nhau.
C. Vuông góc nhau.
D. Cắt nhau.
Đường thẳng (d1) có vtpt và
d2 có vtpt
Hai đường thẳng này có
nên hai đường thẳng này song song với nhau.
Chọn A.
xác định vị trí tương đối giữa 2 đường thẳng delta 1: x-2x+1=0 và delta 2: -3x-4y-1=0
Xem lại đề phương trình đường thẳng delta1
cho đường thẳng d1 : y = -2x+3 d2: y = -2x + m d3 : y = 1/2 x + 1 a) xét vị trí tương đối của hai đường thẳng d1 và d2 b) xét vị trí tương đối của hai đường thẳng d2 và d3
d1//d2 vì chung hệ số của x là -2
d2 cắt d3 do các hệ số a,b đều khác nhau
Xác định vị trí tương đối của hai đường tròn (C1): x2+ y2 – 4 = 0 và (C2): (x-3)2+ (y-4) 2= 25
A. Không cắt nhau.
B. Cắt nhau.
C. Tiếp xúc nhau.
D. Tiếp xúc ngoài.
Ta có: (C1): x2+ y2 – 4 = 0 có tâm O (0; 0) và bán kính R= 2;
Dường tròn (C2): (x-3)2+ (y-4) 2= 25 có tâm I( 3;4) và R= 5 nên OI= 5
Ta thấy: 5-2 < OI< 5+ 2
nên chúng cắt nhau.
Chọn B.
Cho tam giác ABC vuông tại A, AB=3cm;AC=4cm. Vẽ đường tròn(A ; 2,8cm). Xác định vị trí tương đối của đường thẳng BC và đường tròn(A ; 2,8cm)