Biết x + 3 x 2 − 4 . 8 − 12 x + 6 x 2 − x 3 9 x + 27 = ... − 9 ( ... ) . Đa thức thích hợp điền vào chỗ trống ở tử và mẫu lần lượt là
A. x – 2; x + 2
B. ( x – 2 ) 2 ; x+ 2
C. x +2; ( x – 2 ) 2
D. – ( x – 2 ) 2 ; x+ 2
1. Biết x+y=3 ; x.y=1. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
2. Biết x+y=4 ; x.y=2. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
bài 1 tìm các số nguyên x,y biết a)2^x=8
b) 3^4=27
c)(-1,2).x=(-1,2)^4
d)x:(-3/4)=(-3/4)^2
e)(x+1)^3=-125
f)(x-2)^3=64
bài 2 tìm các số nguyên x,y biết
a)(x-1,2)^2=4
d)(x-1,5)^2=9
e)(x-2)^3=64
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a, tìm x biết: | x-1| + | x+3| = 4
b, tìm x biết: | x2 + | 6x - 2| | = x2 + 4
c, tìm x biết: |2x +3| - 2| 4 - x| = 5
a) Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\ge\left|1-x+x+3\right|=4\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+3\ge0\end{matrix}\right.\)
\(\Leftrightarrow-3\le x\le1\)
Vậy,..................................................................................................................................
a) (x-1) :2=(y-2):3=(z-3):4 . biết x-2y+3z=14
b) (x-2):2=(y-3):3=(z-4):4 ,biết x-2y+3z=16
1) 3(x-2) + 4(x-1) = 25 2) (5x-3)(x-2) = (x-1)(x-2) 3) (x-2)² = 4(x-1)²
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(\Leftrightarrow3x-6+4x-4=25\)
\(\Leftrightarrow7x=35\)
\(\Leftrightarrow x=5\)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)
\(\left(x-2\right)^2=4\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)-2\left(x-1\right)\right]\left[\left(x-2\right)+2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2-2x+2\right)\left(x-2+2x-2\right)=0\)
\(\Leftrightarrow\left(-x\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Tìm x biết x+5/12=-2/3 b,4/5+3/4:x=1/2 c,x/2+x/3=1/4
a ) x + 5/12 = -2/3
=> x = -2/3 - 5/12
=> x = -8/12 - 5/12
=> x = -13/12
b ) 4/5 + 3/4 : x = 1/2
=> 3/4 : x = 1/2 - 4/5
=> 3/4 : x = 5/10 - 8/10
=> 3/4 : x = -3/10
=> x = 3/4 : -3/10
=> x = -5/2
c ) x/2 + x/3 = 1/4
=> 3x/6 + 2x/6 = 1/4
=> ( 3x + 2x )/6 = 1/4
=> 5x/6 = 1/4
=> 20x/24 = 6/24
=> 20x = 6
=> x = 6 : 20
=> x = 0 , 3
Chúc bạn học giỏi !!!
tìm x, biết: (2^x-8)^3+(4^x+13)^3= (4^x+2^x+5)^3
(2\(^x\)-8)\(^3\)=(4\(^x\)+2\(^x\)+5)\(^3\)-(4\(^x\)+13)\(^3_{ }\)
(2\(^x\)-8)\(^3\)=[(4\(^x\)+2\(^x\)+5) - (4\(^x\)+13)].[(4\(^x\)... + (4\(^x\)+13)\(^2\)]
(2\(^x\) - 8)\(^3\) = (2\(^x\)-8).[(4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+... + (4\(_{ }^x\)+13)\(^2\)]
2\(^x\) = 8 \(\Rightarrow\) x = 3
hoặc (2\(^x\)-8)\(^2\) = (4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+2\(^x\)+5)(4\(^x\)+... + (4\(^x\)+13)\(^2\)
(4\(^x\)+2\(^x\)+5)\(^2\) - (2\(^x\)-8)\(^2\)+(4\(^x\)+2\(_{ }^x\)+5)(4\(^x\)+13) + (4\(^x\)+13)\(^2\) = 0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t = 2\(^x\)( t > 0)
t\(^2\) + t + 5=0 ptvn
( Xin lỗi bạn , vì đoạn cuối mình mỏi tay nên ghi vậy đỡ nha ! (*) là dấu nhân nha bạn )
Tìm x biết: x/2^2+x/2^3+x/2^4=x/3^2+x/3^3+x/3^4
giải chi tiết giúp mình vs
Tìm x biết :
x + 4/5 = 4/5 + ( 3/7 + 3/5 ) 5/7 + x/35 = 4/5
x < 3/4 + 2 2/3 + 1 < x < 5/6 + 4
x< 5/6 - 3/4 2/3 < x < 2 - 5/6
a: =>x=3/7+3/5=15/35+21/35=36/35
b: =>x/35=4/5-5/7=28/35-25/35=3/35
=>x=3
c: =>x<3/4+8/4=11/4
=>\(x\in\left\{0;1;2;3\right\}\)
d: =>5/3<x<5/6+24/6=29/6
=>\(x\in\left\{2;3;4\right\}\)
e: =>x<10/12-9/12=1/12
=>x=0
f: =>2/3<x<12/6-5/6=7/6
=>x=1