Cho hai đường thẳng song song d 1 và d 2 . Trên d 1 lấy 17 điểm phân biệt, trên d 2 lầy 20 điểm phân biệt. Tính số tam giác mà có các đỉnh được chọn từ 37 điểm này.
A. 5690
B.5960
C. 5950
D. 5590
Cho hai đường thẳng d và d’ song song với nhau. Trên d lấy 5 điểm phân biệt, trên d’ lấy 7 điểm phân biệt. Hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm trên hai đường thẳng d và d’.
A. 175
B. 220
C. 1320
D. 105
cho hai đường thẳng d1 và d2 song song nhau. trên d1 lấy 5 điểm trên d2 lấy 3điểm. hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm đã chọn
Xét 2 trường hợp:
Th1: 1 điểm trên d1, 2 điểm trên d2
Chọn 1 điểm trên d1 có \(C_{17}^1\) (cách)
Chọn 2 điểm trên d2 có \(C^2_{20}\) (cách)
\(\Rightarrow C^1_{17}.C^2_{20}\) (tam giác)
Th2: 1 điểm trên d2, 2 điểm trên d1
Chọn 1 điểm trên d2 \(C^1_{20}\left(cach\right)\)
Chọn 2 điểm trên d1 \(C^2_{17}\left(cach\right)\)
\(\Rightarrow C^1_{20}.C^2_{17}\left(tam-giac\right)\)
\(\Rightarrow C^1_{17}.C^2_{20}+C^2_{17}.C^1_{20}=...\left(tam-giac\right)\)
1.Cho hai đường thẳng song song. Trên đường thẳng thứ nhất lấy 5 điểm phân biệt và trên đường thẳng thứ hai lấy 4 điểm phân biệt. Nối các điểm với nhau để tạo thành các đường thẳng. Hỏi có bao nhiêu đường thẳng?
2.số nhỏ nhất lớn hơn 4 chia cho 5,6,7 đều dư 4.
1.Cho hai đường thẳng song song. Trên đường thẳng thứ nhất lấy 5 điểm phân biệt và trên đường thẳng thứ hai lấy 4 điểm phân biệt. Nối các điểm với nhau để tạo thành các đường thẳng. Hỏi có bao nhiêu đường thẳng?
2.số nhỏ nhất lớn hơn 4 chia cho 5,6,7 đều dư 4.
( Tớ giải bài 2 thôi nhé! )
Nếu số cần tìm trừ đi 4 thì số mới chia hết cho cả 5 ; 6 và 7.
Mà BCNN { 5 ; 6 ; 7 } = 210 ( do lớn hơn 4 )
Vậy số cần tìm là: 210 + 4 = 214
Đáp số: 214
Trên mặt phẳng Oxy cho đường thẳng \(\text{ (d) : y = (m + 1) x - 2m}\) và parabol \(\left(P\right):y=\frac{1}{2}x^2\)
a. Tìm m để đường thẳng (d) song song với dường thẳng (d') : y = 3x + 4
b. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ dương.
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
a:
b: Phương trình OA có dạng là y=ax+b
Theo đề, ta có hệ:
0a+b=0 và a+b=1
=>b=0 và a=1
=>y=x
Vì (d)//OA nên (d): y=x+b
Thay x=2 và y=0 vào (d), ta được:
b+2=0
=>b=-2
=>y=x-2
PTHĐGĐ là:
-x^2-x+2=0
vì a*c<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
Số phát biểu đúng
1. Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy
3. Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó
4. 2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
5. Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )
6. Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng chứa a và cắt theo giao tuyến b thì b song song với a
7. Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó
8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
A. 8
B. 7
C. 6
D. 5
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D .Từ D kẻ đường thẳng song song với BC cắt đường thẳng AC tại E. Hai tia phân giác của hai góc ADE và góc ABC cắt nhau tại O.
CMR: góc BOE=1/2 (góc ABC + góc ACB)
Kẻ OF//BC(F thuộc AC)
=>OF//DE//BC
DE//BC
=>góc DEA=góc ACB
=>góc DEO=1/2*góc ACB
ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF
=>góc EOF=1/2*góc ACB
=>góc DEO=góc EOF
OF//BC
=>góc FOB=góc OBC=1/2góc ABC
góc BOE=góc BOF+góc EOF
=1/2(góc ABC+góc ACB)