Cho hai số thực dương x, y. Tìm giá trị lớn nhất của biểu thức:
P = 2018 - 16 y 3 + 10 3 x - 24 y + 12 . 10 x + l o g y
A. 2050
B. 2038
C. 2042
D. 2048
Cho hai số thực dương x,y thỏa mãn 2x + 2y = 4. Tìm giá trị lớn nhất Pmax của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy.
A. Pmax = 27 2
B. Pmax = 18
C. Pmax = 27
D. Pmax = 12
Đáp án B.
Ta có 4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y
⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .
Suy ra x y ≤ x + y 2 2 = 1
Khi đó
P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y
≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y
= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18
Vậy Pmax = 18 khi x = y = 1.
Cho hai số thực dương x, y thỏa mãn 2 ln x + y 2 . 5 ln x + y = 2 ln 5 . Tìm giá trị lớn nhất của biểu thức sau: P = ( x + 1 ) ln x + ( y + 1 ) ln y .
A. 10
B. 0
C. 1
D. ln2
Cho hai số thực dương x,y thỏa mãn 2 x + 2 y = 4 . Tìm giá trị lớn nhất P m a x của biểu thức P = 2 x 2 + y 2 y 2 + x + 9 x y .
A. 26
B. 18
C. 27
D. 12
Cho hai số thực dương x,y thỏa mãn 2 x + 2 y = 4 . Tìm giá trị lớn nhất P m a x của biểu thức P = 2 x 2 + y 2 y 2 + x + 9 x y
A. P m a x = 27 2
B. P m a x = 18
C. P m a x = 27
D. P m a x = 12
Cho hai số thực dương x,y thỏa mãn . Giá trị lớn nhất của biểu thức là:
A. 18
B. 12
C. 16
D. 21
Cho hai số thực dương x, y thỏa mãn \(2^x+2^y=4\). Tìm giá trị lớn nhất Pmax của biểu thức \(P=\left(2x^2+y\right)\left(2y^2+x\right)+9xy\)
\(4=2^x+2^y\ge2\sqrt{2^{x+y}}\Rightarrow2^{x+y}\le4\Rightarrow x+y\le2\)
\(\Rightarrow xy\le1\)
\(P=4x^2y^2+2x^3+2y^3+10xy\)
\(P=4x^2y^2+10xy+2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(P\le4x^2y^2+10xy+4\left(4-3xy\right)=4x^2y^2-2xy+16\)
Đặt \(xy=t\Rightarrow0< t\le1\)
Xét hàm \(f\left(t\right)=4t^2-2t+16\) trên \((0;1]\)
\(\Rightarrow...\)
Cho x,y là các số thực dương thỏa mãn x + y ≤ 3. Tìm giá trị nhỏ nhất của biểu thức Q = \(x^2+y^2-9x-12y+\dfrac{16}{2x+y}+25\)
Cho x, y là hai số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
Với x, y thực dương áp dụng BĐT Cauchy ta có:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)
\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)
\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)
Vậy Pmin = 10 tại x = y.
áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)
x2+y2\(\supseteq\)2xy
nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10
dấu = xảy ra\(\Leftrightarrow\)x=y
Cho hai số x, y là số thực dương thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức : M = x2y2 ( x2 + y2 )
cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)
\(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)
áp dụng BĐT trên theo chiều ngược lại:(x,y dương)
\(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)
do đó \(M\le\frac{1}{2}xy.4=2xy\)
mà \(xy\le1\Rightarrow M\le2\)
dấu = xảy ra khi x=y=1