Gọi I là tâm của đường tròn C : x - 1 2 + y - 1 2 = 4 . Số các giá trị nguyên của m để đường thẳng x+y-m=0 cắt đường tròn (C) tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích lớn nhất là
A.1
B.3
C.2
D.0
Cho tam giác ABc , lấy D trên cạnh BC , vẽ đường tròn tâm I qua D tiếp xúc với AB tại B. Vẽ đường tròn tâm K qua D tiếp xúc với AC tại C . Gọi M là giao điểm của hai đường tròn đó
1. CM : tứ giác ABMC nội tiếp
2. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC . CM : 3 đường tròn tâm I, tâm K và tâm O đồng quy
3. CM : MD di chuyển qua 1 điểm cố định
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Cho đường tròn tâm O đường kính AB. Trên bán kính OA, lấy điểm C tùy ý (C khác O và A). Vẽ đường tròn tâm J đường kính AC. Gọi I là trung điểm BC. Qua I vẽ dây cung MN vuông góc BC; AM cắt đường tròn tâm J tại E.
a/ CM CIME nội tiếp.
b/ CM BMCN là hình thoi. Từ đó suy ra ba điểm E, C, N cùng thuộc một đường thẳng.
c/ CM IE là tiếp tuyến của đường tròn tâm J.
d/ Đường tròn tâm M bán kính MI cắt đường tròn tâm O tại P và Q, Gọi H là giao điểm của PQ và MN. Tính tỉ số HM/HN
ho tam giác abc nội tiếp đường tròn (o,r) goi I là tâm của đường tròn nội tiếp tam giác đó gọi M N P lần lượt là tâm của các đường tròn bàng tiếp trong các góc A, B, C. gọi K là điểm đối xứng của I qua O. Chứng minh rằng K laftaam đường tròn ngoại tiếp tam giác MNP
cách làm thôi nha
GỌi D là gia điểm của AM zới đường tròn (O)
CM các tam giác DBI . DBM cân
=> DI=DM
DO đó OD là đường trung bình của tam giác MIK
=> KM=2OD=2R
Zậy M thuộc đường tròn (K;2R)
tương tự đối zới các điểm N , P
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>ΔACD vuông tại C
mà CM là đường trung tuyến
nên CM=AD/2=AM=DM
Xét ΔMAO và ΔMCO có
MA=MC
MO chung
AO=CO
DO đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b: Ta có: MC=MA
nên M nằm trên đường trung trực của AC(1)
Ta có: OC=OA
nên O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OM là đường trung trực của AC
hay OM vuông góc với AC tại trung điểm của AC
Cho đường tròn tâm O, đường kính AB=2R. Điểm C nằm trên đường tròn (C khác A,B). Gọi H là hình chiếu của C trên AB. Vẽ đường tròn tâm I đường kính HA và đường tròn tâm K đường kính HB. CA cắt (I) tại M (khác A), CB cắt (K) tại N (khác B)
a) Tứ giác CMHN là hình gì? Vì sao ?
b) Chứng minh MN là tiếp tuyến chung của (I), (K)
c) Chứng minh AB tiếp xúc với đường tròn đường kính MN.
d) Biết HA= . Tính diện tích tứ giác IMNK theo R.
mng giúp e với ạ e cảm ơn ạ
Cho ΔABC nội tiếp đường tròn (O). Gọi I và K lần lượt là tâm của đường tròn nội tiếp và bàng tiếp ˆA của tam giác.
a, C/m: A, I, K thẳng hàng
b, Gọi M là giao điểm của IK với đường tròn (O). C/m: MI = MK
Gọi I là tâm đường tròn nội tiếp tam giác ABC . đường tròn đi qua 3 điểm B,C,I cắt AB,AC lần lượt tại D và E. Chứng minh :
DE là tiếp tuyến của đường tròn nội tiếp tâm I
Cho góc xOy bằng 90 độ. Trên tia Ox lấy điểm I, Oy lấy điểm K. Đường tròn tâm I bán kính Ok cắt Ox tại M ( I nằm giữa O và M ). Đường tròn tâm K bán kính OI cắt Oy tại N ( K nằm giữa O và N).
a, C/m: Đường tròn tâm I và đường tròn tâm K cắt nhau
b, Tiếp tuyến tại M của đường tròn tâm I và tiếp tuyến tại N của đường tròn tâm K cắt nhau tại C. C/m: OMCN là hình vuông
c, Gọi giao điểm của 2 đường tròn tâm I và đường tròn tâm K là A và B. C/m: A,B,C thẳng hàng
d, Giả sử I và K di động trên Ox là Oy sao cho Oy+OA = a (không đổi). C/m: AB luôn đi qua một điểm cố định.
cho đường tròn tâm o đường kính AB trên cùng 1 nửa đường tròn (O) đường kính AB lấy 2 điểm C và D sao cho cung AC nhỏ ho7n cung AD .Gọi T là giao điểm của CD và AB .Vẽ đường tròn tâm I đường kính TO cắt đường tròn tâm O tại M và N (M nằ giũa cung nhỏ CD ) nối MN cắt AB tại E . cHỨNG MINH TM là tiếp tuyến của đường tròn (O) chứng minh TM^2= TC.TD . 4 điểm o, d,c,e cùng nằm trên đường tròn
a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)
b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)
\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)
c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)
mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)
mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)
Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)
\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp