Tìm tất cả các giá trị thực của tham số m để đường thẳng đi qua điểm cực đại, cực tiểu của đồ thị hàm số y = x 3 - 3 m x + 2 cắt đường tròn tâm I(1;1) bán kính R=1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất.
A. m = 2 ± 3 2
B. m = 1 ± 3 2
C. m = 2 ± 5 2
D. m = 1 ± 5 2
Tìm tất cả các giá trị của m để đường thẳng đi qua điểm cực đại, cực tiểu của đồ thị hàm số y = x 3 − 3 m x + 2 cắt đường tròn tâm I 1 ; 1 , bán kính bằng 1 tại hai điểm phân biệt sao cho diện tích tam giác IAB đạt giá trị lớn nhất
A. m = 1 ± 3 2
B. m = 2 ± 3 2
C. m = 2 ± 5 2
D. m = 2 ± 3 3
Cho hàm số y = 2 x - 1 x - 2 có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến ∆ của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến ∆ của (C) tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào?
A. (26;27).
B. (29;30).
C. (27;28).
D. (28;29).
Cho hàm số y = 2 x - 1 x - 2 có đồ thị C . Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến ∆ của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến ∆ của (C) tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào ?
A. 29 ; 30
B. 27 ; 28
C. 26 ; 27
D. 28 ; 29
Cho hàm số y = x x − 1 có đồ thị = C và đường thẳng d : y = − x + m . Khi đó số giá trị của m để đường thẳng d cắt đồ thị C tại hai điểm phân biệt A, B sao cho tam giác OAB (O là gốc tọa độ ) có bán kính đường tròn ngoại tiếp bằng 2 2 là:
A.0
B. 3
C. 1
D. 2
Cho hàm số y = x + 1 x − 2 Số các giá trị tham số m để đường thẳng y = m + x luôn cắt đồ thị hàm số tại hai điểm phân biệt A, B sao cho trọng tâm tam giác OAB nằm trên đường tròn x 2 + y 2 − 3 y = 4 là
A. 1
B. 0
C. 3
D. 2
Trong hệ tọa độ Oxy. Cho đường tròn (C ) có phương trình x 2 + y 2 - 4 x + 2 y - 15 = 0 . I là tâm (C), đường thẳng d qua M(1;-3) cắt (C ) tại A, B. Biết tam giác IAB có diện tích là 8. Phương trình đường thẳng d là x+by+c=0. Tính (b+c)
A. 8.
B. 2.
C. 6
D. 1.
Cho hàm số y = 2 x − 1 x − 2 có đồ thị (C) Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến Δ của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến của Δ của (C)tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào
A. (27;28)
B. (28;29)
C. (26;27)
D. (29;30)
Giả sử m = - a b , a , b ∈ Z + , ( a , b ) = 1 là giá trị thực của tham số m để đường thẳng d : y = - 3 x + m cắt đồ thị hàm số y = 2 a + 1 x - 1 tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng ∆ : x - 2 y - 2 = 0 với O là gốc tọa độ. Tính a+2b
A. 2
B. 5
C. 11
D. 21