Tích 1 2019 ! 1 − 1 2 1 . 1 − 1 3 2 . 1 − 1 4 3 ... 1 − 1 2019 2018 . được viết dưới dạng a b , khi đó (a;b) là cặp nào trong các cặp sau
A. 2020 ; − 2019
B. (2019;-2019)
C. (2019;-2020)
D. (2018;-2019)
Cho S=(1-2/2.3)(1-2/3.4)...... (1-2/2020.2021) là 1 tích của 2019 thừa số.Tính S ( kết quả đề dưới dạng phân số tối giản)
Đề bài : Tính và so sánh hai phân số sau
E = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)và F = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)
Bạn nào làm nhanh và đúng thì mình sẽ tích cho bạn đó nhé
ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)
\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F
E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1
E=1+1/2019+1
E=2/2020
E=1/1010
F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1
F= 1+1/2019+1
F=2/2020
F=1/1010
từ đó ta có E=F(=1/1010)
nghỉ sao rút gọn được vậy có dấu + mà(ví dụ\(\frac{2\cdot2+1}{2\cdot2\cdot2+1}=\frac{5}{9}\ne\frac{2}{3}\))
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
So sánh \(A=\frac{2^{2019}}{2^{2019}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2019}}+\frac{5^{2019}}{5^{2019}+2^{2019}}\)với \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
Tham khảo
https://hoc24.vn/hoi-dap/question/814814.html
B=11.2+13.4+15.6+....+12019.2020
⇒2B=21.2+23.4+25.6+....+22019.2020
<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020
2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020
2B<1+12−13+13−14+...+12019−12020
2B<1+12−12020<1+12
B<34
---------------------
Đặt 22018=a;32019=b;52020=c(a,b,c>0)
A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1
⇒A>1>34>B
2019 + 2019 : 0,5 + 2019 :0,2 + 2019 :0,125
các bạn làm nhanh hộ mình ai làm nhanh nhất mình cho 1 tích
2019 + 2019 : 0,5 + 2019 : 0,2 + 2019 : 0,125
= 2019 x 1 + 2019 x 2 + 2019 x 5 + 2019 x 8
= 2019 x ( 1 + 2 + 5 + 8 )
= 2019 x 16
= 32304
Trl :
2019 + 2019 : 0,5 + 2019 : 0,2 + 2019 : 0,125
= 2019 x 1 + 2019 x 2 + 2019 x 5 + 2019 x 8
= 2019 x ( 1 + 2 + 5 + 8 )
= 2019 x 16
= 32304
[(1+2019/1)+(1+2019/2)+...+(1+2019/1020)]:[(1+1020/1)(1+1020/2)+....+(1+1020/2019)]
Mik sắp nộp r ai nhanh mik tick liền lun miễn là bài làm tốt 👍
Tính bằng cách thuận tiện nhất:
2015/2019 : 1/2 + 3/2019 :1/2 + 1/2019 : 1/2
=(2015/ 2019 + 3/2019 + 1/2019 ) : 1/2
= 2019/2019 x 2
= 1 x2
=2
2015/2019:1/2+3/2019:1/2+1/2019:1/2
=(2015/2019+3/2019+1/2019):1/2
=1:1/2
=2
k cho mink nha
2015/2019 : 1/2 + 3/2019 : 1/2 + 1/2019 : 1/2
= ( 2015/2019 + 3/2019 + 1/2019 ) : 1/2
= 1 : 1/2
= 2
Chúc bn hok tốt ! ^_^
tính A=(1/2+1/2^2+1/2^3 +.....+1/2^2019):(1-1/2^2019)
Đặt D = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) + ...... + \(\dfrac{1}{2^{2019}}\)
⇔ 2D = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + ...... + \(\dfrac{1}{2^{2018}}\)
⇔ D = 1 - \(\dfrac{1}{2^{2019}}\)
⇒ A = (1 - \(\dfrac{1}{2^{2019}}\)) : (1 - \(\dfrac{1}{2^{2019}}\))
⇒ A = 1
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
M = \(\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)
N = \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)
Cám ơn các cậu.
1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)
\(\Rightarrow1+2019^2=2020^2-2.2019\)
\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)
\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)
\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)
\(=2020\)
Vậy M=2020.
2) Xét : \(k\in N;k\ge2\)ta có:
\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)
\(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)
\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)
Cho \(k=3,4,...,2020.\)Ta có:
\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)
Vậy \(N=2018\frac{1009}{2020}.\)