Biết rằng tổng S = 1 1 ! 2019 ! + 1 3 ! 2017 ! + 1 5 ! 2015 ! + . . . + 1 2019 ! 1 ! có thể viết dưới dạng 2 a b ! với a, b là số nguyên dương. Tính S = a + 2b
A. S = 6058
B. S = 6059
C. S = 6056
D. S = 6057
Tích 2017 ! 1 + 1 1 1 1 + 1 2 2 ... 1 + 1 2017 2017 được viết dưới dạng a b . Khi đó a ; b là cặp nào trong các cặp sau:
A. 2018 ; 2017
B. 2019 ; 2018
C. 2015 ; 2014
D. 2016 ; 2015
Cho hàm số y=f(x)=x(x+1)(x+2)(x+3)...(x+2018)(x+2019). Tínhf’(0).
A. 0.
B. 2019 1 + 2019 2
C. P 2019
D. 2019
Xét các khẳng định sau
i) Nếu a > 2019 thì a x > 2019 x ∀ x ∈ ℝ
ii) Nếu a > 2019 thì b a > b 2019 ∀ b > 0
iii) Nếu a > 2019 thì log b a > log b 2019 ∀ n > 0 ; b ≢ 0
Số khẳng định đúng trong các khẳng định trên là:
A. 3
B. 1
C. 2
D. 0
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f ’ ( x ) = ( x + 2 ) ( x - 1 ) 2018 ( x - 2 ) 2019 . Khẳng định nào sau đây là đúng?
A. Hàm số có ba điểm cực trị
B. Hàm số nghịch biến trên khoảng (-2;2)
C. Hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại các điểm x = ± 2
D. Hàm số đồng biến trên mỗi khoảng (1;2) và (2;+∞)
Cho hàm số f(x) = ( x - 1 )( x - 2 )( x - 3 )...( x - 2019 ). Tính f '(1)
A. 0
B. 1
C. 2018!
D. 2019!
Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như sau.
x -∞ -2 -1 2 4 +∞
f’(x) + 0 - 0 + 0 - 0 +
Hàm số y =-2f(x)+2019 nghịch biến trên khoảng nào trong các khoảng dưới đây?
A. (-4 ;2)
B. (-1 ;2)
C. (-2 ;-1)
D. (2 ;4)
Cho dãy số u n xác định bởi u 1 = 0 và u n + 1 = u n + 4 n + 3 với ∀ n ≥ 2 . Biết rằng dãy số thỏa mãn l i m u n + u 4 n + u 4 2 n + . . . + u 4 2018 n u n + u 2 n + u 2 2 n + . . . + u 2 2018 n = a 2019 + b c với a, b, c là các số nguyên dương và b < 2019. Tính giá trị của S = a + b - c
A. S = -1
B. S = 0
C. S = 2017
D. S = 2018
Cho hàm số f ( x ) = ( 1 - x 2 ) 2019 . Khẳng định nào sau đây là đúng
A. Hàm số đồng biến trên R
B. Hàm số đồng biến trên (-∞;0)
C. Hàm số nghịch biến trên (-∞;0)
D. Hàm số nghịch biến trên R