19) Tìm m để pt x2 - 5x + 2m +3 = 0 có 1 nghiệm x = 2 . Tìm nghiệm còn lại.
Bài 1: Cho pt ẩn x:
x2 - 2(m + 1)x + m2 + 7 = 0 (1)
a) Giải pt (1) khi m = -1; m = 3.
b) Tìm m để pt (1) có nghiệm là 4. Tìm nghiệm còn lại.
c) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa:
* x12 + x22 = 0
* x1 - x2 = 0
Bài 2: Cho pt ẩn x:
x2 - 2x - m2 - 4 = 0 (1)
a) Giải pt (1) khi m = -2.
b) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn:
* x12 + x22 = 20
* x13 + x23 = 56
* x1 - x2 = 10
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
cho pt: x2-2(m+1)x+2m-5=0
1) tìm m để phương trình (1) có 1 nghiệm x= 2 tìm nghiệm còn lại.
2) Chứng tỏ rằng phương trình luôn có hai nghiệm phân biệt với mọi m . tìm m m để x1 , x2 thỏa mãn x12+(2m+2)x2 -7 = 0
giúp em với mai em thi rồi.
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
Bài 1: Cho pt ẩn x: x2 - 2(m+1) x + m2 - m = 0 (1)
a) Giải pt (1) khi m = -1, m = 0
b) Tìm m để pt (1) có 1 nghiệm là 1. Tìm nghiệm còn lại.
c) Trong trường hợp pt (1) có 2 nghiệm hãy tính: x12 + x22; (x1-x2)2.
Bài 2: Cho pt: x2 - 4x + 3 = 0
Tính giá trị biểu thức:
a) x12 + x22
b) \(\dfrac{1}{x1+2}+\dfrac{1}{x2+2}\)
c) x13 + x23.
d) x1 - x2.
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
Cho phương trình \(x^2-\left(2m-3\right)x+m^2=0\)
Định m để pt đã cho có 1 nghiệm bằng -1. Tìm nghiệm còn lại.
Để PT có nghiệm bằng \(-1\), thay \(x=-1\) ta có:
\(\left(-1\right)^2-\left(2m-3\right)\left(-1\right)+m^2=0\\ \Leftrightarrow1+2m-3+m^2=0\\ \Leftrightarrow m^2+2m-2=0\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\\m=-1-\sqrt{3}\end{matrix}\right.\)
Với \(m=-1+\sqrt{3}\Rightarrow x_1x_2=m^2=4-2\sqrt{3}\Rightarrow x_2=-4+2\sqrt{3}\)
Với \(m=-1-\sqrt{3}\Rightarrow x_1x_2=m^2=4+2\sqrt{3}\Rightarrow x_2=-4-2\sqrt{3}\)
Để pt đã cho có nghiệm bằng -1 thì \(1-\left[-\left(2m-3\right)\right]+m^2=0\)\(\Leftrightarrow1+2m-3+m^2=0\)\(\Leftrightarrow m^2+2m-2=0\)\(\Leftrightarrow\left(m+1\right)^2-\left(\sqrt{3}\right)^2=0\)\(\Leftrightarrow\left(m+1+\sqrt{3}\right)\left(m+1-\sqrt{3}\right)=0\)\(\Leftrightarrow m=-1\pm\sqrt{3}\)
Khi đó nghiệm còn lại bằng \(\dfrac{m^2}{1}=\left(-1\pm\sqrt{3}\right)^2=4\mp2\sqrt{3}\)
Khi \(m=-1+\sqrt{3}\) thì nghiệm còn lại bằng \(4-2\sqrt{3}\)
Khi \(m=-1-\sqrt{3}\) thì nghiệm còn lại bằng \(4+2\sqrt{3}\)
X2 – 2m x + 4 =0 (2) ⦁ Tìm m để PT(2) có nghiệm ⦁ Tìm m để PT(2) vô nghiệm
Để pt (2) vô nghiệm khi
\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)
`(2m-5)x^2 -2(m-1)x+3=0`
a. Tìm m để pt có 1 nghiệm bằng 2 (cái này không cần làm ạ), tìm nghiệm còn lại
b. tìm m để pt có 2 nghiệm sao cho \(x_1-x_2=3\); nghiệm này bằng bình phương nghiệm kia
b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
Câu b của em là 2 ý phân biệt đúng không?
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2
1)Cho pt: x2-2mx+2m-3=0
a)Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lại
b)Tìm m để pt có 2 nghiệm đều dương
2)Một oto đi quãng đường AB dài 80km trong 1 thời gian đã định. 3434 quãng đường đầu oto chạy nhanh hơn dự định 10km/h. Quãng đường còn lại oto chạy chậm hơn dự định 15km/h. Biết rằng oto đến B đúng giờ quy định. Tính thời gian oto đi hết quãng đường AB?
3) Cho C là 1 điểm nằm trên đoạn thẳng AB (C ≠A, C≠B). Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB kẻ 2 tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm I (I≠A), tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P
CM:
a)Tứ giác CPKB nội tiếp được đường tròn. Xác định tâm của tròn đó
b)AI.BK=AC.CB
c)Tam giác APB vuông
Bài 1:
a) Thay x=-2 vào phương trình, ta được:
\(\left(-2\right)^2-2m\cdot\left(-2\right)+2m-3=0\)
\(\Leftrightarrow4+4m+2m-3=0\)
\(\Leftrightarrow6m=-1\)
hay \(m=-\dfrac{1}{6}\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2m\)
\(\Leftrightarrow x_2-2=\dfrac{-1}{3}\)
hay \(x_2=\dfrac{5}{3}\)
Bài 1:
b) Ta có: \(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(=4m^2-2\cdot2m\cdot2+4+8\)
\(=\left(2m-2\right)^2+8>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm đều dương thì
\(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1\cdot x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m>0\\2m-3>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m>\dfrac{3}{2}\)