Nghiệm của phương trình sin 2 x - sin x = 0 thỏa mãn điều kiện: 0 < x < π
tìm m sao cho phương trình \(\frac{2sinx-1}{sin+3}=m\) có đúng 2 nghiệm thỏa mãn điều kiện \(0\le x\le\pi\)
Phương trình sin 2 x = - 1 2 có bao nhiêu nghiệm thỏa mãn 0 < x < π
A. 1
B. 3
C. 2
D. 4
tìm m sao cho phương trình \(\frac{2\sin x-1}{\sin x+3}=m\) có đúng 2 nghiệm thỏa mãn điều kiện 0≤x≤π
Nghiệm của phương trình cos2 x- cosx = 0 thỏa mãn điều kiện 0 < x < π
A. x= π / 6
B. x= π / 2
C. x= π / 4
D. x=- π / 2
Hướng dẫn giải
Chọn B.
Ta có : cos2 x- cosx = 0 ó cosx. ( cosx – 1) = 0
Phương trình sin x = 1 2 có nghiệm thỏa mãn - π 2 ≤ x ≤ π 2 là
Nghiệm của phương trình cos2 x+ cosx = 0 thỏa mãn điều kiện: π 2 < x < 3 π 2
A. x= π
B. x= π /3
C. x=3 π /2
D. x=-3 π /2
Vì π 2 < x < 3 π 2 nên nghiệm của phương trình là x= π
Nghiệm của phương trình : \(sin\left(x+17^.\right).cos\left(x-22^.\right)+cos\left(x+17^.\right).sin\left(x-22^.\right)=\frac{\sqrt{2}}{2}\) thỏa mãn điều kiện \(x\in\left(0^.;90^.\right)\) là ? (. là độ nha mn )
\(\Leftrightarrow sin\left(x+17^0+x-22^0\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(2x-5^0\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5^0=45^0+k360^0\\2x-5^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=25^0+k180^0\\x=70^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25^0\\x=70^0\end{matrix}\right.\)
Nghiệm của phương trình cos 2 x - cos x = 0 thỏa mãn điều kiện 0 < x < π là
A. x = π 2
B. x = - π 2
C. x = π 6
D. x = π 4
Tìm nghiệm của phương trình lượng giác cos 2 x - cos x = 0 thỏa mãn điều kiện 0 < x < π
A. x = π 2
B. x=0
C. x= π
D. x=2
Đáp án A
Giải phương trình lượng giác sau đó kết hợp vào điều kiện của đầu bài để tìm ra nghiệm thỏa mãn.
Mà k ∈ ℤ nên không có giá trị k nào thỏa mãn.
Sai lầm và chú ý: Đối với những bài toán giải phương trình lượng giác thỏa mãn điều kiện cho trước, ta cần tìm được x sau đó cho x thỏa mãn điều kiện đầu bài và cô lập được k khi đó ta sẽ tìm được giá trị nguyên k thỏa mãn và sẽ tìm đc x.