Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
AMD ryzen 7-5700X
Xem chi tiết
Tô Hà Thu
12 tháng 11 2021 lúc 14:40

S R I N

\(i=i'\)

\(\Rightarrow\)Góc hợp bởi tia phản xạ với mặt gương bằng góc hợp bởi tia tới và mặt gương

\(\Rightarrow\)SI năm phương nằm ngang một góc 45o

AMD ryzen 7-5700X
Xem chi tiết
IamnotThanhTrung
12 tháng 11 2021 lúc 14:27

20 độ

Tô Hà Thu
12 tháng 11 2021 lúc 14:34

20o nhé bn!

Kậu...chủ...nhỏ...!!!
12 tháng 11 2021 lúc 15:27

B

AMD ryzen 7-5700X
Xem chi tiết
Tô Hà Thu
12 tháng 11 2021 lúc 14:44

S A I

\(\Rightarrow\)Câu A

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 9:33

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔCDM

Thanh Hoàng Thanh
16 tháng 12 2021 lúc 17:22

a) Xét tam giác ABM và tam giác CDM có:

+ AM = CM (cho M là trung điểm của AC).

+ BM = DM (gt).

\(\widehat{AMB}=\widehat{CMD}\) (2 góc đối đỉnh).

\(\Rightarrow\)  Tam giác ABM = Tam giác CDM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{DCM}\) (Tam giác ABM = Tam giác CDM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) AB // CD (dhnb).

c) Xét tam giác ABN và tam giác ECN có:

+ BN = CN (N là trung điểm của BC).

\(\widehat{ANN}=\widehat{ENC}\) 2 góc đối đỉnh).

\(\widehat{ABN}=\widehat{ECN}\) (do AB // CD).

\(\Rightarrow\) Tam giác ABN = Tam giác ECN (g - c - g).

\(\Rightarrow\) CE = AB (2 cạnh tương ứng).

Mà AB = CD (Tam giác ABM = Tam giác CDM).

\(\Rightarrow\) CE = CD (cùng = AB).

\(\Rightarrow\) C là trung điểm của DE (đpcm).

d) Xét tam giác BDE có:

+ M là trung điểm của BD (do MD = MB).

+ C là trung điểm của DE (cmt).

\(\Rightarrow\) MC là đường trung bình.

\(\Rightarrow\) MC // BE và MC = \(\dfrac{1}{2}\) BE (Tính chất đường trung bình trong tam giác).

Lại có: MC = \(\dfrac{1}{2}\) MF (do MC = MF).

\(\Rightarrow\) BE = MF.

Xét tứ giác BMEF có:

+ BE = MF (cmt).

+ BE // MF (MC // BE; C thuộc MF).

\(\Rightarrow\) Tứ giác BMEF là hình bình hành (dhnb).

\(\Rightarrow\) ME cắt BF tại trung điểm của mỗi đường (Tính chất hình bình hành).

Mà O là trung điểm của ME (gt).

\(\Rightarrow\) O là trung điểm của BF.

\(\Rightarrow\) 3 điểm B; O; F thẳng hàng (đpcm).

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 20:23

1: Ta có: \(\widehat{BAD}+\widehat{B}=90^0\)

\(\widehat{BCE}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAD}=\widehat{BCE}\)

2: Ta có: \(\widehat{AHE}+\widehat{BAD}=90^0\)

\(\widehat{ABD}+\widehat{BAD}=90^0\)

Do đó: \(\widehat{AHE}=\widehat{ABD}\)

thuylinh
20 tháng 8 2021 lúc 21:04

câu 3:

Xét tam giác AEH vuông tại E: góc AHE+ góc EAH= 90 độ

                                                  60 độ +góc EAH=90 độ

                                                           góc EAH=30 độ (1)

Ta có: góc A= góc EAH+ góc HAC= 30 độ +45 độ= 75 độ 

Xét tam giác ADB vuông tại D có: góc B + góc EAH= 90 độ

                                                     góc B= 90 độ - 30 độ= 60 độ

lại có: góc BAC+  góc B + góc ACB= 180 độ (đ/ lý tổng ba góc trong 1 tam giác)

=> góc ACB= 180 độ-( 75 độ + 60 độ )= 45 độ

 

 

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:57

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 1:13

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔBAC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

Nguyễn Tuấn Linh
Xem chi tiết
Rin Huỳnh
30 tháng 8 2021 lúc 9:53

1. Tam giác AOC và tam giác BOD có: AO = BO; CO = DO: góc AOC = góc BOD (đối đỉnh)

--> tam giác AOC = tam giác BOD (c.g.c)

--> góc ACO = góc ODB

Mà 2 góc này ở vị trí so le trong

--> AC // BD

Rin Huỳnh
30 tháng 8 2021 lúc 9:55

b) Tam giác ACD và tam giác BDC có: CD chung; AC = BD (do tam giác AOC = tam giác BOD); góc ACO = góc ODB (câu a)

--> tam giác ACD = tam giác BDC

Rin Huỳnh
30 tháng 8 2021 lúc 9:58

c) tam giác ACD = tam giác BDC (câu b)

--> góc DBC = góc CAD

Tam giác DAE và tam giác CBF có: góc DBC=góc CAD; AE = BF; BC = AD

--> tam giác DAE = tam giác CBF (c.g.c)

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 17:23

Áp dụng t/c dtsbn:

\(a+b+c=\dfrac{c}{a+b+1}=\dfrac{a}{b+c+2}=\dfrac{b}{a+c-3}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=\dfrac{1}{2}\\2c=a+b+1\\2a=b+c+2\\2b=a+c-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+1=3c\\a+b+c+2=3a\\a+b+c-3=3b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3c=\dfrac{3}{2}\\3a=\dfrac{5}{2}\\3b=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}\\a=\dfrac{5}{6}\\b=-\dfrac{5}{6}\end{matrix}\right.\)