Cho tứ diện ABCD và các điểm M,N xác định bởi A M → = 2 A B → — 3 A C → ; D N → = D B → + x D C → Tìm x để ba véc tơ A D → , B C → , M N → đồng phẳng.
A. x=-1
B. x=-3
C. x=-2
D. x=2
Cho tứ diện ABCD và các điểm M, N xác định bởi A M → = 2 A B → - 3 A C → ; D N → = D B → + x D C → . Tìm x để các vectơ A D → , B C → , M N → đồng phẳng.
A. x = - 1
B. x = - 3
C. x = - 2
D. x = 2
Cho tứ diện ABCD và các điểm M, N xác định bởi A M → = 2 A B → - 3 A C → ; D N → = D B → + x D C → . Tìm x để các vectơ A D → , B C → , M N → đồng phẳng
A. x=-1
B. x=-3
C. x=-2
D. x=2
Cho tứ diện ABCD. Lấy điểm M thuộc đoạn AB. Gọi N, P là các điểm thuộc miền trong các tam giác ACD, BCD tương ứng. Xác định thiết diện tạo bởi mặt phẳng (MNP) cắt tứ diện ABCD ?
Cho tứ diện ABCD và các điểm M,N xác định bởi A M → = 2 A B → − 3 A C → ; D N → = D B → + x D C → . Tìm x để ba véc tơ A D → , B C → , M N → đồng phẳng
A.x= -1
B. x= -3
C. x= -2
D. x= 2
Đáp án C
A M → = 2 A B → − 3 A C → D N → = D B → + x D C → = A B → − A D → + x A C → − A D → = A B → + x A C → − ( x + 1 ) A D → M N → = A N → − A M → = A D → + D N → − A M → = − A B → + ( x + 3 ) A C → − x A D → B C → = A C → − A B →
Để 3 vectơ A D → , B C → , M N → đồng phẳng ⇔ ∃ m , n ∈ R sao cho :
A M → = 2 A B → − 3 A C → D N → = D B → + x D C → = A B → − A D → + x A C → − A D → = A B → + x A C → − ( x + 1 ) A D → M N → = A N → − A M → = A D → + D N → − A M → = − A B → + ( x + 3 ) A C → − x A D → B C → = A C → − A B → M N → = m . A D → + n B C → ⇔ − A B → + ( x + 3 ) A C → − x A D → = m A D → + n ( A C → − A B → ) ⇔ n − 1 = 0 x + 3 − n = 0 x + m = 0 ⇔ n = 1 x = − 2 m = 2
Cho tứ diện ABCD. M,N lần lượt là trung điểm của AD và BD; G là trọng tâm tam giác ABC.
a) Tìm giao tuyến của mặt phẳng (ABC) và (MNG);
b) Xác định thiết diện tạo bởi (MNG) và tứ diện ABCD.
G là điểm chung của hai mặt phẳng (ABC) và (MNG).
Ta có BC // MN (Do MN là đường trung bình của tam giác ABD).
Vậy giao tuyến của hai mặt phẳng (ABC) và (MNG) là đường thẳng d đi qua G song song với BC.
Trong (ABC): d BC = P
d AC = QVậy thiết diện cần tìm là tứ giác MNPQ.
a) G là điểm chung của hai mặt phẳng (ABC) và (MNG)
Ta có BC // MN (Do MN là đường trung bình của tam giác ABD).
Vậy giao tuyến của hai mặt phẳng (ABC) và (MNG) là đường thẳng d đi qua G // BC.
b) Trong (ABC): d BC = P
d ∩ AC =Q
Vậy thiết diện cần tìm là tứ giác MNPQ
Cho tứ giác ABCD. Gọi M,N là các điểm được xác định bởi MA- 2 MB = 0 , 2NC+3 NA = 0 và G là trọng tâm tam giác ABC
a/Chứng minh: AB+CD = AD+ CB .
b/ Tính AM theo AB và AN theo AC.
c/ Chứng minh ba điểm M,G, N thẳng hàng.
Cho tứ diện ABCD, M, N lần lượt là trung điểm của AB và BC. P nằm trên cạnh AD sao cho 2AD=3AP
a) xác định giao điểm của mặt phẳng PMN và CD
b) xác định thiết diện cắt bới MNP và hình chóp
1.` Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Tìm điểm M xác định bởi đẳng thức vectơ .\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\).
2.
Gọi ,MN lần lượt là trung điểm của các cạnh ACvà BDcủa tứdiện .ABCD Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \(\overrightarrow{IA}+2k-1\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
1/ \(\overrightarrow{AM}=3\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)
\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MG}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MA}+3\overrightarrow{AG}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AM}=3\overrightarrow{AG}\)
Ban tu ket luan
2/ Bạn coi lại đề bài, đẳng thức kia có vấn đề. 2k-1IB??