Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2017 lúc 6:34

Đáp án B.

Có y ' = − 4 x 3 + 4 m x .   y ' = 0   ⇔ x = 0 x = m c = − m   (Có 3 cực trị nên m > 0 ).

3 điểm cực trị là A 0 ; − 1 ; B m ; m 2 − 1 ; C − m ; m 2 − 1 .  O là tâm đường tròn ngoại tiếp

⇔ O A = O B = O C ⇔ 1 = m + m 2 − 1 2 ⇔ m 4 − 2 m 2 + m = 0 ⇔ m m − 1 m 2 + m − 1 = 0 ⇔ m = 1 m = − 1 + 5 2  (Ta chỉ lấy m > 0 .)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2017 lúc 1:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2018 lúc 15:33

Đáp án đúng : A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 5 2017 lúc 16:21

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2018 lúc 7:44

Chọn D

Khi đó đồ thị hàm số có 3 điểm cực trị là:

Vì B, C đối xứng với nhau qua trục tung nên  B C ⊥ O A

Do đó O là trực tâm tam giác:

Kết hợp điều kiện, vậy m = 1 là giá trị cần tìm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 8 2018 lúc 2:32

Chọn D

y ' = 4 x 3 - 4 m x

Hàm số có 3 điểm cực trị  ⇔ m > 0

Khi đó đồ thị hàm số có 3 điểm cực trị là

A (0;m-1)

B ( m ; m 2 + m - 1 )

C ( - m ; m 2 + m - 1 )

Vì B,C đối xứng nhau qua trục tung nên  B C ⊥ O A

Do đó O là trực tâm tam giác ABC

Với  O B ⇀ = ( m , m 2 + m - 1 ) , A C ⇀ = ( - m , m 2 )

Vậy m = 1 là gtct

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2018 lúc 6:17

+ Đạo hàm y’  = 4x3- 4mx

Hàm số có 3 điểm cực trị khi và  chỉ khi m≠0.

+ Khi đó đồ thị hàm số có 3 điểm cực trị là:

+ Vì B,C đối xứng nhau qua trục tung nên BC và OA vuông góc với nhau. 

Do đó O là trực tâm tam giác ABC  khi và chỉ khi OB vuông góc AC hay 

Với 

Kết hợp với điều kiện m ≠ 0 thì m = 1 là giá trị cần tìm.

Chọn B.

Nguyễn Hồ Kim Trang
Xem chi tiết
Phạm Thái Dương
22 tháng 4 2016 lúc 20:45

Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)

a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)

              \(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)

              \(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)

                                            \(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)

Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm

b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA

Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)

\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)

Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)

                                                             \(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1

Vậy m = 0 hoặc m = 1 là giá trị cần tìm

c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm  của tam giác ABC

<=> \(y_A+2y_B=0\)

\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)

\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm

Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2017 lúc 5:40

Chọn D

T a   c ó   y ' = 3 x 2 - 6 ( m + 1 ) x + 12 m

Hàm số có hai cực trị  ⇔ y ' = 0  có hai nghiệm phân biệt

A ( 2 ; 9 m ) ,   B ( 2 m - 4 m 3 + 12 m 2 - 3 m + 4 )

ABC nhận O làm trọng tâm