Cho hàm số. Tìm m để đồ thị có ba điểm cực trị tạo thành một tam giác có trọng tâm trùng với gốc tọa.
A. .
B. .
C. hoặc .
D..
Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số y = − x 4 + 2 m x 2 − 1 có 3 điểm cực trị tạo thành một tam giác có tâm đường tròn ngoại tiếp trùng với gốc tọa độ O.
A. m = 0 hoặc m = 1.
B. m = 1 hoặc m = − 1 + 5 2 .
C. m = 1 hoặc m = − 1 − 5 2 .
D. m = − 1 − 5 2 hoặc m = − 1 + 5 2 .
Đáp án B.
Có y ' = − 4 x 3 + 4 m x . y ' = 0 ⇔ x = 0 x = m c = − m (Có 3 cực trị nên m > 0 ).
3 điểm cực trị là A 0 ; − 1 ; B m ; m 2 − 1 ; C − m ; m 2 − 1 . O là tâm đường tròn ngoại tiếp
⇔ O A = O B = O C ⇔ 1 = m + m 2 − 1 2 ⇔ m 4 − 2 m 2 + m = 0 ⇔ m m − 1 m 2 + m − 1 = 0 ⇔ m = 1 m = − 1 + 5 2 (Ta chỉ lấy m > 0 .)
Cho hàm số y = x 4 - 2 m x 2 + 1 - m . Tìm tất cả các giá trị thực của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ Olàm trực tâm
A. m=0
B. m=2
C. m=1
D. Không tồn tại m
Cho hàm số y = x 4 - 2 m x 2 + 1 - m . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O làm trực tâm.
A. m = 1
B. m = 2
C. m = 0
D. m = -1
Cho hàm số y = x 4 - 2 m x 2 + 1 - m . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác nhân gốc tọa độ O làm trực tâm.
A. m = -1
B. m = 0
C. m = 1
D. m = 2
Cho hàm số y = x 4 - 2 m x 2 + m - 1 . Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số có ba điểm cực trị tạo thành 1 tam giác nhận gốc tọa độ O làm trực tâm .
A. m = 4
B. m = 2
C. m = 3
D. m = 1
Chọn D
Khi đó đồ thị hàm số có 3 điểm cực trị là:
Vì B, C đối xứng với nhau qua trục tung nên B C ⊥ O A
Do đó O là trực tâm tam giác:
Kết hợp điều kiện, vậy m = 1 là giá trị cần tìm
Cho hàm số y = x 4 - 2 m x 2 + m - 1 . Tìm tất cả các giá trị của tham số thưc m để đồ thị hàm số có ba điểm cực trị tạo thành 1 tam giác nhận gốc tọa độ O làm trực tâm
A. m = 4.
B. m = 2.
C. m = 3.
D. m = 1.
Chọn D
y ' = 4 x 3 - 4 m x
Hàm số có 3 điểm cực trị ⇔ m > 0
Khi đó đồ thị hàm số có 3 điểm cực trị là
A (0;m-1)
B ( m ; m 2 + m - 1 )
C ( - m ; m 2 + m - 1 )
Vì B,C đối xứng nhau qua trục tung nên B C ⊥ O A
Do đó O là trực tâm tam giác ABC
Với O B ⇀ = ( m , m 2 + m - 1 ) , A C ⇀ = ( - m , m 2 )
Vậy m = 1 là gtct
Cho hàm số y= x4-2mx2+ m-1. Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số có ba điểm cực trị tạo thành 1 tam giác nhận gốc tọa độ O làm trực tâm .
A. m=0
B. m=1
C. m= 1;2
D. m= 0;1
+ Đạo hàm y’ = 4x3- 4mx
Hàm số có 3 điểm cực trị khi và chỉ khi m≠0.
+ Khi đó đồ thị hàm số có 3 điểm cực trị là:
+ Vì B,C đối xứng nhau qua trục tung nên BC và OA vuông góc với nhau.
Do đó O là trực tâm tam giác ABC khi và chỉ khi OB vuông góc AC hay
Với
Kết hợp với điều kiện m ≠ 0 thì m = 1 là giá trị cần tìm.
Chọn B.
Cho hàm số \(y=x^4-2mx^2+m-1\left(1\right)\), với m là tham số thực.
Xác định m để hàm số (1) có 3 điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác biết :
a) Có bán kính đường tròn ngoại tiếp bằng 1
b) Có trực tâm là gốc tọa độ
c) Có trọng tâm là gốc tọa độ
Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)
Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :
\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)
a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)
\(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)
\(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)
\(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)
Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm
b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA
Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)
\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)
Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1
Vậy m = 0 hoặc m = 1 là giá trị cần tìm
c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm của tam giác ABC
<=> \(y_A+2y_B=0\)
\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)
\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm
Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x 3 - 3 ( m + 1 ) x 2 + 12 m x - 3 m + 4 ( C ) có hai điểm cực trị là A và B sao cho hai điểm này cùng với điểm C - 1 ; - 9 2 lập thành tam giác nhận gốc tọa độ O làm trọng tâm
A. m = 1 2
B. m = - 2
C. m = 2
D. m = - 1 2
Chọn D
T a c ó y ' = 3 x 2 - 6 ( m + 1 ) x + 12 m
Hàm số có hai cực trị ⇔ y ' = 0 có hai nghiệm phân biệt
A ( 2 ; 9 m ) , B ( 2 m - 4 m 3 + 12 m 2 - 3 m + 4 )
ABC nhận O làm trọng tâm