Tìm tất cả các giá trị thực của tham số m để phương trình x 4 − 2 x 2 − 3 = m có 4 nghiệm phân biệt.
A. -1 < m < 1
B. m < -4
C. -4 < m < -3
D. m > -1
tìm tất cả các giá trị thực của tham số m để phương trình x-4√(x+3 ) + m = 0 có 2 nghiệm phân biệt
\(x-4\sqrt{x+3}+m=0\)
\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)
\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)
\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)
\(\Rightarrow f\left(0\right)=-3\)
\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)
\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)
tìm tất cả các giá trị thực của tham số m để phương trình \(^{x^2-2x+\sqrt{-x^2+2x}-3+m=0}\) có nghiệm
Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)
\(\Rightarrow-t^2+t-3+m=0\)
\(\Leftrightarrow t^2-t+3=m\)
Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)
\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)
\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)
Tìm tất cả các giá trị thực của tham số m để phương trình (m^2-4)x=3m+6 vô nghiệm
cần gấp
\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
Câu 1. Tìm tất cả các giá trị thực của tham số
m
để phương trình
2
m x m 4 3 6
vô nghiệm.
A.
m 1.
B.
m 2.
C.
m 2.
D.
m 2.
Câu 2. Tìm tất cả các giá trị thực của tham số
m
để phương trình
mx m 0
vô nghiệm.
A.
m.
B.
m 0 .
C.
m .
D.
m .
Câu 3. Tìm giá trị thực của tham số
m
để phương trình
2 2
m m x m m 5 6 2
vô nghiệm.
A.
m 1.
B.
m 2.
C.
m 3.
D.
m 6.
Câu 4. Cho phương trình
2
m x m x m 1 1 7 5
. Tìm tất cả các giá trị thực của tham số
m
để phương trình đã cho vô
nghiệm.
A.
m 1.
B.
m m 2; 3.
C.
m 2.
D.
m 3.
Câu 6. Tìm tất cả các giá trị thực của tham số
m
để phương trình
2 4 2 m x m
có nghiệm duy nhất.
A.
m 1.
B.
m 2.
C.
m 1.
D.
m 2.
Trang 24
Câu 11. Tìm tất cả các giá trị thực của tham số để phương trình có nghiệm đúng với mọi thuộc
A. B. C. D.
Vấn đề 2. SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI
Câu 16. Phương trình
2
ax bx c 0
có nghiệm duy nhất khi và chỉ khi:
A.
a 0.
B.
0
0
a
hoặc
0
.
0
a
b
C.
abc 0.
D.
0
.
0
a
Câu 17. Số 1
là nghiệm của phương trình nào trong các phương trình sau?
A.
2
x x 4 2 0.
B.
2
2 5 7 0. x x
C.
2
3 5 2 0. x x
D.
3
x 1 0.
Câu 20. Phương trình vô nghiệm khi:
A. B. C. D.
Câu 22. Phương trình có nghiệm kép khi:
A. B. C. D.
m
2 m x m 1 1 x .
m 1. m 1. m 1. m 0. 2 m x mx m 1 2 2 0 m 2. m 2. m 2. m 2. 2 m x x – 2 2 –1 0 m m 1; 2. m 1. m 2. m 1.
Trang 25
Câu 23. Phương trình có nghiệm duy nhất khi:
A. B. C. D.
Câu 24. Phương trình có nghiệm duy nhất khi:
A. B. C. D.
Câu 25. Phương trình có nghiệm kép khi:
A. B. C. D.
Vấn đề 3. DẤU CỦA NGHIỆM PHƯƠNG TRÌNH BẬC HAI
Câu 41. Phương trình
2
ax bx c a 0 0
có hai nghiệm phân biệt cùng dấu khi và chỉ khi:
A.
0
.
P 0
B.
0
.
P 0
C.
0
.
S 0
D.
0
.
S 0
Câu 42. Phương trình
2
ax bx c a 0 0
có hai nghiệm âm phân biệt khi và chỉ khi:
A.
0
.
P 0
B.
0
0.
0
P
S
C.
0
0.
0
P
S
D.
0
.
S 0
2 mx x m 6 4 3 m . m 0. m . m 0. 2 mx m x m – 2 1 1 0 m 0. m 1. m m 0; 1. m 1. 2 m x m x m 1 – 6 1 2 3 0 m 1. 6
1;
7
m m
6
.
7
m
6
.
7
m
Trang 26
Câu 43. Phương trình
2
ax bx c a 0 0
có hai nghiệm dương phân biệt khi và chỉ khi:
A.
0
.
P 0
B.
0
0.
0
P
S
C.
0
0.
0
P
S
D.
0
.
S 0
Câu 44. Phương trình
2
ax bx c a 0 0
có hai nghiệm trái dấu khi và chỉ khi:
A.
0
.
S 0
B.
0
.
S 0
C.
P 0.
D.
P 0.
Câu 45. Phương trình
2
x mx 1 0
có hai nghiệm âm phân biệt khi:
A.
m 2.
B.
m 2.
C.
m 2.
D.
m 0.
Tìm tất cả các giá trị thực của tham số m để bất phương trình mx^2 + (m-1)x +m -1
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
3.
Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)
\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)
Mặt khác:
\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)
(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)
Tìm tất cả các giá trị thực của tham số m để phương trình ( m2 - 4 ) x4 + ( m - 2 ) x 2 + 1 = 0. Có đúng hai nghiệm phân biệt.!!
Trường hợp 1: \(m\ne\pm2\)
Để phương trình có đúng hai nghiệm phân biệt thì phương trình này sẽ có hai nghiệm trái dấu
=>\(m^2-4< 0\)
hay -2<m<2
Trường hợp 2: m=2
Pt sẽ là 1=0(vô lý)
Trường hợp 3: m=-2
=>-4x2+1=0(nhận)
Vậy: -2<=m<2
Tìm tất cả các giá trị thực của tham số m để bất phương trình -2x2 +2(m-2)x+m-2<0 có nghiệm
ĐỀ THI HỌC KỲ I
Câu 1 : giải phương trình ln (3x2 - 2x +1) = ln ( 4x - 1)
Câu 2 : Tìm tập hợp các giá trị của tham số m để phương trình 3x + 3 = m \(\sqrt{9^x+1}\) có đúng 1 nghiệm
Câu 3 : Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = -x3 + 3mx + 1 có 2 điểm cực trị A , B sao cho tam giác OAB vuông tại O ( với O là gốc tọa độ )
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7