Trong khai triển 1 - 3 x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n . Tìm a 2 biết a 0 - a 1 + a 2 - a 3 + . . . + - 1 n a n = 2 2018
A. a 2 = 508536
B. a 2 = 9
C. a 2 = 4576824
D. a 2 = 18316377
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)
\(\Rightarrow n+6+1=17\Rightarrow n=10\)
6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)
\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)
7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)
\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)
Cho biết 3 số hạng đầu của khai triển ( x + 1 2 x ) n , x > 0 có các hệ số là 3 số hạng liên tiếp của một cấp số cộng. Tìm số hạng thứ 5 trong khai triển trên
A. 35 8 x 4
B. 35 8
C. 53 8 x 4
D. 53 8
Tìm số hạng không chứa x trong khai triển \(\left(3x^3-\dfrac{1}{x^2}\right)^n\) , (x\(\ne\)0) biết rằng n\(\in\)N*: \(2P_n-\left(4n+5\right)P_{n-2}=3A^{_nn-2}\)
Cái chỗ vế phải biểu thức nghĩa là gì thế bạn?
Chắc là thế này \(3A^{n-2}_n\)
\(gt\Leftrightarrow2.n!-\left(4n+5\right)\left(n-2\right)!=3.\dfrac{n!}{2!}\)
\(\Leftrightarrow\dfrac{1}{2}n!=\left(4n+5\right)\left(n-2\right)!\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)\left(n-2\right)!=\left(4n+5\right)\left(n-2\right)!\)
\(\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)=4n+5\Leftrightarrow n=10\)
\(\left(3x^3-\dfrac{1}{x^2}\right)^{10}=\left(3x^3-x^{-2}\right)^{10}=\sum\limits^{10}_{k=0}C^k_{10}3^{10-k}.x^{3\left(10-k\right)}.\left(-1\right)^k.x^{-2k}\)
\(=\sum\limits^{10}_{k=0}C^k_{10}.\left(-1\right)^k.3^{10-k}.x^{30-5k}\)
=> so hang ko chua x: \(30-5k=0\Leftrightarrow k=6\)
\(\Rightarrow C^6_{10}.\left(-1\right)^6.3^{10-6}=17010\)
1.Tìm số nguyên dương bé nhất n sao cho trong khai triển (1+x)n có hai hệ số liên tiếp có tỉ số là 7/5
2. Trong khai triển (x-2)100 =a0 +a1x+ ...+ a100x100. Hệ số a97 là bao nhiêu ?
Giúp mình với 🥰🥺
\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)
Hệ số của 2 số hạng liên tiếp là \(C_n^k\) và \(C_n^{k+1}\)
\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)
\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)
\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)
\(\Rightarrow n_{min}=11\) khi \(k=4\)
2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)
\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)
Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)
Biết tổng các hệ số của ba số hạng đầu trong khai triển \(\left(x^3+\dfrac{1}{x^2}\right)^n\) bằng 11. Tìm hệ số của \(x^7\) trong khai triển đó.
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\) ( với x khác 0) biết:
\(2A^2_n=C^2_{n-1}+C^3_{n-1}\)
Ta có:
\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)
\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)
\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)
\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)
Với n=14 ta có khai triển:
\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)
\(=C_{14}^k\cdot x^{28-4k}\)
Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)
Vậy số hạng không chứa x trong khai triển là:
\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)
C35 Cho n là số nguyên dương lẻ , thõa mãn 5 C ¹N - C² N =15 . Tìm hệ số của x² trong khai triển nhị thức Niuton ( 2x+ 1/x²)^n A. 60 B. 90 C. 80 D .110 C14: số Nghiệm của pt √3x+5=2 là A. 3 B. 0 C. 2 D. 1 Giúp cho e
tìm số hạng chứa x\(^{15}\) trong khai triển : (2x\(^3\) - \(\dfrac{1}{4x^2}\))\(^{40}\) (x\(\ne\)0)
Khai triển \(\left(2x^3-\dfrac{1}{4}x^{-2}\right)^{40}\) có số hạng tổng quát:
\(C_{40}^k\left(2x^3\right)^k\left(\dfrac{1}{4}\right)^{40-k}.\left(x^{-2}\right)^{40-k}=C_{40}^k2^k.4^{k-40}.x^{5k-80}\)
Số hạng chứa\(x^{15}\Rightarrow5k-80=15\Leftrightarrow k=19\)
Số hạng đó là: \(C_{40}^{19}2^{19}.4^{-21}x^{15}=C_{40}^{19}.\dfrac{1}{2^{23}}.x^{15}\)
Tìm số hạng không chứa x trong khai triển nhị thức Newton x − 2 x 2 21 , x ≠ 0 , n ∈ N *
A. 2 7 C 21 7
B. 2 8 C 21 8
C. − 2 8 C 21 8
D. − 2 7 C 21 7
Đáp án D
Ta có: ( x − 2 x 2 ) 21 = ∑ k = 0 21 C 21 k . x k . ( − 2 x 2 ) 21 − k = ∑ k = 0 21 C 21 k . x k − 2 ( 21 − k ) ( − 2 ) 21 − k
Số hạng không chứa x ó k – 2(21 – k) = 0 ó k = 14
Số cần tìm là C 21 14 ( − 2 ) 21 − 14 = C 21 7 ( − 2 ) 7 (theo tính chất C n k = C n n − k )
Tìm số hạng không chứa x trong khai triển nhị thức Newton
x
-
2
x
2
21
, (x
≠
0,
n
∈
N
*
)
A. 2 7 C 21 7
B. 2 8 C 21 8
C. - 2 8 C 21 8
D. - 2 7 C 21 7