Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 8:16

Lấy điểm M thuộc đường tròn (I). Qua I' kẻ đường thẳng song song với IM, đường thẳng này cắt đường tròn (I') tại M' và M''. Hai đường thẳng MM' và MM'' cắt đường thẳng II' theo thứ tự O và O'. Khi đó, O và O' là các tâm vị tự cần tìm

Vì hai đường tròn đã cho có bán kính khác nhau nên chúng có hai tâm vị tự là O và O', xác định trong từng trường hợp như sau ( xem hình vẽ):

a) Trường hợp 1:

b) Trường hợp 2:

c) Trường hợp 3:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2019 lúc 17:16

Gọi hai đường tròn là (I1: R1) và (I2; R2).

+ TH1: I1 ≡ I2; khi đó tâm vị tự O ≡ I1 ≡ I2; tỉ số vị tự Giải bài 6 trang 34 sgk Hình học 11 | Để học tốt Toán 11 biến đường tròn (I1; R1) thành đường tròn (I2; R2).

+ TH2: I1 ≠ I2.

Vẽ bán kính I1M bất kì.

Dựng đường kính AB của (I2; R2) sao cho AB // I1M.

MA; MB lần lượt cắt I1I2 tại O1 và O2.

Khi đó O1 và O2 chính là hai tâm vị tự của hai đường tròn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2017 lúc 16:48

Đáp án A

Đường tròn C  có tâm K 1 ; 2 , bán kính R = 1 + 4 − 4 = 1  .

Đường tròn C ' có tâm K ' − 3 ; − 2 , bán kính R ' = 9 + 4 − 4 = 3.  

Giả sử V 1 ; k C = C '  

khi đó k = R ' R ⇒ k = 3 ⇔ k = ± 3  

Với k = 3 ⇒ I K ' → = 3 I K → ⇒ − 3 − x 1 = 3 1 − x 1 − 2 − y 1 = 3 2 − y 1 ⇒ I 3 ; 4  

Với k = − 3 ⇒ I K ' → = − 3 I K → ⇒ − 3 − x 1 = − 3 1 − x 1 − 2 − y 1 = − 3 2 − y 1 ⇒ I 0 ; 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2018 lúc 2:00

Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 8:32
a. Hai đường tròn tiếp xúc ngoài với nhau.
b. Hai đường tròn tiếp xúc trong với nhau
c. Một đường tròn chứa đường tròn kia

a.a. Hai đường tròn (I;R)(I;R)(I′;R′)(I′;R′) tiếp xúc ngoài với nhau, ta xét :
*Trường hợp 1:1: Nếu R=R′R=R′ thì k=±1k=±1
Khi đó, tâm vị tự OO thỏa mãn :
OI′−→−=kOI−→⇒kOI′→=kOI→⇒k chỉ có thể bằng −1−1
⇒O⇒O (tâm vị tự trong) là trung điểm của II′II′ (chính là tiếp điểm của hai đường tròn)

*Trường hợp 2:2: Nếu R≠R′R≠R′ thì ta có thể xác định các phép vị tự sau :
- Lấy A′B′A′B′ là một đường kính của đường tròn I′;R′I′;R′IAIA là một bán kính của (I;R)(I;R) sao cho hai véctơ IA−→IA→I′A′−→−I′A′→ cùng hướng
- Đường thẳng II′II′ cẳt AA′,AB′AA′,AB′ lần lượt tại O1O1 (tâm vị tự ngoài) và O2O2 (tâm vị tự trong và O2O2 trùng với tiếp điểm)




b.b. Hai đường tròn (I;R),(I′;R′)(I;R),(I′;R′) tiếp xúc trong với nhau (R≠R′)(R≠R′) ta có thể xác định các phép vị tự sau :
- Lấy A′B′A′B′ là một đường kính của đường tròn (I′;R′)(I′;R′)IAIA là một bán kính của (I;R)(I;R) sao cho hai véctơ IA−→,I′A′−→−IA→,I′A′→ cùng hướng.
- Đường thẳng II′II′ cắt AA′,AB′AA′,AB′ lần lượt tại O1O1 (tâm vị tự ngoài) và O2O2 (tâm vị tự trong)



c.c. Đường tròn (I;R)(I;R) nằm trong đường tròn (I′;R′)(I′;R′) ta xét :

*Trường hợp 1: Nếu I≡I′I≡I′ thì khi đó tâm vị tự OO trùng với điểm II
Vậy ta có hai phép vị tự :
- Phép vị tự V1(I;k1)V1(I;k1) với k1=R′Rk1=R′R (biến điểm MM thành điểm M′1M1′)
- Phép vị tự V2(I;k2)V2(I;k2) với k2=−R′Rk2=−R′R (biến điểm MM thành điểm M′2M2′)
*Trường hợp 2:2:
Nếu II không trùng với I′I′ thì ta có thể xác định các phép vị tự sau :
- Lấy A′B′A′B′ là một đường kính của đường tròn (I′;R′)(I′;R′)IAIA là một bán kính của (I;R)(I;R) sao cho hai véctơ IA−→,I′A′−→−IA→,I′A′→ cùng hướng
- Đường thẳng II′II′ cắt AA′,AB′AA′,AB′ lần lượt tại O1O1 (tâm vị tự ngoài) và O2O2 (tâm vị tự trong)
Trần Đăng Nhất
31 tháng 3 2017 lúc 8:53
a. Hai đường tròn tiếp xúc ngoài với nhau.
b. Hai đường tròn tiếp xúc trong với nhau
c. Một đường tròn chứa đường tròn kia

a.a. Hai đường tròn (I;R)(I;R)(I′;R′)(I′;R′) tiếp xúc ngoài với nhau, ta xét :
*Trường hợp 1:1: Nếu R=R′R=R′ thì k=±1k=±1
Khi đó, tâm vị tự OO thỏa mãn :
OI′−→−=kOI−→⇒kOI′→=kOI→⇒k chỉ có thể bằng −1−1
⇒O⇒O (tâm vị tự trong) là trung điểm của II′II′ (chính là tiếp điểm của hai đường tròn)

*Trường hợp 2:2: Nếu R≠R′R≠R′ thì ta có thể xác định các phép vị tự sau :
- Lấy A′B′A′B′ là một đường kính của đường tròn và là một bán kính của sao cho hai véctơ IA−→IA→I′A′−→−I′A′→ cùng hướng
- Đường thẳng II′II′ cẳt AA′,AB′AA′,AB′ lần lượt tại O1O1 (tâm vị tự ngoài) và O2O2 (tâm vị tự trong và O2O2 trùng với tiếp điểm)




b.b. Hai đường tròn (I;R),(I′;R′)(I;R),(I′;R′) tiếp xúc trong với nhau (R≠R′)(R≠R′) ta có thể xác định các phép vị tự sau :
- Lấy A′B′A′B′ là một đường kính của đường tròn (I′;R′)(I′;R′)IAIA là một bán kính của (I;R)(I;R) sao cho hai véctơ IA−→,I′A′−→−IA→,I′A′→ cùng hướng.
- Đường thẳng II′II′ cắt AA′,AB′AA′,AB′ lần lượt tại O1O1 (tâm vị tự ngoài) và O2O2 (tâm vị tự trong)



c.c. Đường tròn (I;R)(I;R) nằm trong đường tròn (I′;R′)(I′;R′) ta xét :

*Trường hợp 1: Nếu I≡I′I≡I′ thì khi đó tâm vị tự OO trùng với điểm II
Vậy ta có hai phép vị tự :
- Phép vị tự V1(I;k1)V1(I;k1) với k1=R′Rk1=R′R (biến điểm MM thành điểm M′1M1′)
- Phép vị tự V2(I;k2)V2(I;k2) với k2=−R′Rk2=−R′R (biến điểm MM thành điểm M′2M2′)
*Trường hợp 2:2:
Nếu II không trùng với I′I′ thì ta có thể xác định các phép vị tự sau :
- Lấy A′B′A′B′ là một đường kính của đường tròn (I′;R′)(I′;R′)IAIA là một bán kính của (I;R)(I;R) sao cho hai véctơ IA−→,I′A′−→−IA→,I′A′→ cùng hướng
- Đường thẳng II′II′ cắt AA′,AB′AA′,AB′ lần lượt tại O1O1 (tâm vị tự ngoài) và O2O2 (tâm vị tự trong)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2017 lúc 7:42

Đáp án C

Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14

2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.

3. Qua phép vị tự có tỉ số  đường tròn biến thành chính nó.

12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 9 2017 lúc 15:45

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 7 2017 lúc 10:30

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2017 lúc 18:12

Chọn C