Xác định giá trị a, b, c để 9 x 2 - 16 x + 4 x 3 - 3 x 2 + 2 x = a x + b x - 1 + c x - 2
Bài 9: Cho biểu thức: [(4/x-4)-(4/x-4)].(x^2+8x+16/32)
a) Tìm điều kiện của x để phân thức xác định?
b) Tìm giá trị của x để phân thức có giá trị bằng 1/3
c) Tìm giá trị của x để phân thức có giá trị bằng 1
d) Tìm giá trị nguyên của x để phân thức có giá trị nguyên?
e) Tìm giá trị của x để phân thức luôn dương?
\(A=\frac{x^4-16}{x^4-4x^3+8x^2-16x-16}\)
a) Tìm giá trị của x để giá trị của biểu thức A xác định
b) Rút gọn A
c) Tìm x để A có giá tri bằng 2
d) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
1. Cho biểu thức A= \(\sqrt{4-2x}\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.
c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?
2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)
a) Tìm điều kiện của X để biểu thức P xác định..
b) Tính giá trị của biểu thức khi x=4, x=100
c) Tìm giá trị của x để P=1, P=7
d) Tìm các số nguyên x để giá trị của P cũng là một số nguyên.
3. Cho biểu thức \(\frac{2\sqrt{x}+9}{\sqrt{x}+1}\)
a) Tìm điều kiện xác định của x để biểu thức Q được xác định.
b) Tính giá trị của biểu thức khi x=0,x=1,x=16.
c) Tìm giá trị của x để Q=1,Q=10.
d) Tìm các số nguyên x để giá trị của Q cũng là một số nguyên.
Giải hộ với ạ! Gấp lắm T.T
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)
b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)
Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)
c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)
\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)
d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng:
\(2\sqrt{x}-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(\sqrt{x}\) | \(2\) | \(1\) | \(3\) | \(0\) | \(6\) | \(-3\) |
\(x\) | \(4\) | \(1\) | \(9\) | \(0\) | \(36\) | \(L\) |
Vậy \(x\in\left\{1;4;9;0;36\right\}\)
Cho biểu thức A = 4/(x - 4) + 3/(x + 4) * (6x)/(x ^ 2 - 16) a) Tìm điều kiện để giá trị biểu thức A xác định. b) Rút gọn A
a,ĐKXĐ:\(\left\{{}\begin{matrix}x-4\ne0\\x+4\ne0\\x^2-16\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne\pm4\end{matrix}\right.\Leftrightarrow x\ne\pm4\)
b,\(\dfrac{4}{x-4}+\dfrac{3}{x+4}.\dfrac{6x}{x^2-16}=\dfrac{4}{x-4}+\dfrac{18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x+4\right)^2+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x^2+8x+16\right)+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+32x+64+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+50x+64}{\left(x-4\right)\left(x+4\right)^2}\)
Cho biểu thức: \(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Với giá trị nào của x thì A xác định.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
c) Tim giá trị của x để A đạt GTNN.
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow04\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)
x^5+x^4-16x-16/x^3-6x^2-9x+14
a)Tìm điều kiện của x để giá trị các phân thức được xác định
b)Rút gọn phân thức
c)Tìm giá trị của x để giá trị của phân thức bằng 0
d)Tìm giá trị của phân thức A tại x=3
Cho phân thức A= x²+8x+16/ x²-16 a) Tìm điều kiện xác định của A. b) Rút gọn phân thức. c) Tìm giá trị của x để phân thức A có giá trị bằng 3. d ) Có giá trị nào của x để giá trị của phân thức A bằng 0 hay không? Tại sao?
Lời giải:
a. ĐKXĐ: $x^2-16\neq 0\Leftrightarrow (x-4)(x+4)\neq 0$
$\Leftrightarrow x\neq \pm 4$
b. $A=\frac{x^2+8x+16}{x^2-16}=\frac{(x+4)^2}{(x-4)(x+4)}=\frac{x+4}{x-4}$
c. $A=3\Leftrightarrow \frac{x+4}{x-4}=3$
$\Rightarrow x+4=3(x-4)$
$\Leftrightarrow -2x+16=0$
$\Leftrightarrow x=8$ (tm)
d.
$A=0\Leftrightarrow \frac{x+4}{x-4}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4$
Mà theo ĐKXĐ thì $x\neq \pm 4$ nên không tồn tại $x$ để $A=0$
a) Rút gọn A và tìm điều kiện của x để giá trị của A được xác định. b) Tính giá trị của A tại x = -2. c) Tính giá trị của x để giá trị của A = 4. d) Tính giá trị của x để giá trị của A = 1
a) ĐKXĐ: x≠ \(\dfrac{1}{2}\); x≠ \(\dfrac{-1}{2}\); x≠0
A= \(\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\dfrac{x^2}{2x^2+x}\)
= \(\left(\dfrac{2x+1-3-2\left(2x-1\right)}{4x^2-1}\right):\dfrac{x^2}{2x^2+x}\)
= \(\left(\dfrac{2x+1-3-4x+2}{4x^2-1}\right):\dfrac{x^2}{2x^2+x}\)
= \(\dfrac{-4x}{\left(2x+1\right)\left(2x-1\right)}.\dfrac{x\left(2x+1\right)}{x^2}\)
= \(\dfrac{-4x^2}{x^2\left(2x-1\right)}\)
= \(\dfrac{-4}{2x-1}\)
b) Tại x= -2 ta có A= \(\dfrac{-4}{2.\left(-2\right)-1}\)= \(\dfrac{4}{5}\)
c) A= 4 ta có \(\dfrac{-4}{2x-1}\)=4
⇔ -4 = 4(2x-1)
⇔ -4 = 8x-4
⇔ x = 0
d) A=1 ta có \(\dfrac{-4}{2x-1}\)=1
⇔ -4 = 2x-1
⇔ x= \(\dfrac{-3}{2}\)
cho phân thức\(\dfrac{x^2+6x+9}{x^2-9}\)
a,tìm điều kiện xác định của x để phân thức xác định
b,rút gọn phân thức
c,tính giá trị của A tại x=2