Chứng minh các biểu thức sau xác định với mọi giá trị của t:
a) C = 2 − 3 t 2 t 2 + 4 t + 5 + t − 1 2 ; b) D = t + 1 3 t 2 − t + 1 − 2 t 2 − 3 3 .
Chứng minh các biểu thức sau xác định với mọi giá trị của t: a) (t+1) / (3t^2-t+1) - (2t^2-3) / 3b) I2-3tI / (2t^2+4t+5) + (t-1) / 2
sửa: a) (t+1) / (3t^2-t+1) - (2t^2-3) / 3 b) I2-3tI / (2t^2+4t+5) + (t-1) / 2
Chứng minh các biểu thức sau xác định với mọi giá trị của x:
a) A = 5 − 7 x x 2 + x + 1 − 7 3 ; b) B = x + 10 4 x 2 + 2 x + 3 − x 2 + 4 2 .
Chứng minh rằng biểu thức sau xác định được với mọi giá trị của x
1.\(\sqrt{\dfrac{x^2-2x+2}{2012}}\)
2.\(\sqrt{6x^2-6\sqrt{2x}+3}\)
1.có \(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)
\(=>\dfrac{x^2-2x+2}{2012}\ge\dfrac{1}{2012}>0\)
Vậy biểu thức trên xác định với mọi x
2. đề này sai thử x=0,8 vào căn kia sẽ ra âm nên ko thể xác định với mọi x
1) Ta có: \(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)
\(\Leftrightarrow\dfrac{x^2-2x+2}{2012}>0\forall x\)
Do đó: \(\sqrt{\dfrac{x^2-2x+2}{2012}}\) xác định được với mọi x
Chứng minh biểu thức sau xác định với mọi giá trị của x:
A = x 2 − 4 x 2 + 1 x 2 + 4 x + 5 + 3 2 x .
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
a) Cho biểu thức E = x + 1 x 2 x 2 + 1 x 2 + 2 x + 1 1 x + 1 .
Chứng minh rằng: Giá trị của biểu thức E luôn bằng 1 với mọi giá trị x ≠ 0 và x ≠ - 1
b) Cho biểu thức F = x + 1 2 x − 2 + 3 x 2 − 1 − x + 3 2 x + 2 . 4 x 2 − 4 5 .
Chứng minh rằng với những giá trị của x hàm F xác định thì giá trị của F không phụ thuộc vào x.
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến.
a) x2 - 5x +10
b) 2x2 + 8x +15
c) (x-1).(x-2) + 5
d) (x+5).(x-3) + 20
Mọi người giúp mình với :<
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
Chứng minh các biểu thức sau nhận giá trị dương với mọi giá trị của biến:
a) A = x^2 – x + 1
b) B = (x – 2)(x – 4) + 3
c) C = 2x^2 – 4xy + 4y^2 + 2x + 5
a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)
c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)