Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Khôi Nguyên
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 7 2021 lúc 22:55

6.4

\(y=\dfrac{3}{2}\left(1+cos2x\right)-\sqrt{3}sin2x+\dfrac{1}{2}-\dfrac{1}{2}cos2x\)

\(=cos2x-\sqrt{3}sin2x+2\)

\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)

\(=2cos\left(2x-\dfrac{\pi}{3}\right)+2\)

Do \(-1\le cos\left(2x-\dfrac{\pi}{3}\right)\le1\)

\(\Rightarrow0\le y\le4\)

\(y_{min}=0\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=-1\)

\(y_{max}=4\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=1\)

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 22:59

6.5

Ủa nhìn bài 7 thì đây là chương trình lớp 11 (pt lượng giác) chứ đâu phải lớp 10?

Vậy giải theo kiểu lớp 11 nghe:

\(y=\dfrac{2+cosx+3sinx}{2+cosx}\)

\(\Leftrightarrow2y+y.cosx=2+cosx+3sinx\)

\(\Leftrightarrow3sinx+\left(1-y\right).cosx=2y-2\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(9+\left(1-y\right)^2\ge\left(2y-2\right)^2\)

\(\Leftrightarrow\left(y-1\right)^2\le3\)

\(\Rightarrow1-\sqrt{3}\le y\le1+\sqrt{3}\)

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 23:06

7.

\(\Leftrightarrow\left(m+1\right)\left[\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\right]+cos4x=0\)

\(\Leftrightarrow\left(m+1\right)\left(1-3sin^2x.cos^2x\right)+cos4x=0\)

\(\Leftrightarrow\left(m+1\right)\left(1-\dfrac{3}{4}sin^22x\right)+cos4x=0\)

\(\Leftrightarrow\left(m+1\right)\left(1-\dfrac{3}{8}\left(1-cos4x\right)\right)+cos4x=0\)

\(\Leftrightarrow\left(m+1\right)\left(\dfrac{5}{8}+\dfrac{3}{8}cos4x\right)+cos4x=0\)

\(\Leftrightarrow5\left(m+1\right)+\left(3m+11\right)cos4x=0\)

\(\Leftrightarrow\left(3m+11\right)cos4x=-5\left(m+1\right)\)

- Với \(m=-\dfrac{11}{3}\) pt vô nghiệm

- Với \(m\ne-\dfrac{11}{3}\)

\(\Rightarrow cos4x=\dfrac{-5\left(5m+1\right)}{3m+11}\)

Do \(-1\le cos4x\le1\) nên pt có nghiệm khi:

\(-1\le\dfrac{-5\left(m+1\right)}{3m+11}\le1\)

Tới đây chắc bạn tự làm tiếp được đúng ko? Tách ra làm 2 BPT rồi sau đó giao nghiệm thôi

Trần Việt An
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 17:31

2.

\(\Leftrightarrow cos2x-cos8x-sin3x+cos5x-2sin5x.cos5x=0\)

\(\Leftrightarrow2sin5x.sin3x-sin3x+cos5x-2sin5x.cos5x=0\)

\(\Leftrightarrow sin3x\left(2sin5x-1\right)-cos5x\left(2sin5x-1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos5x\right)\left(2sin5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos5x=sin3x=cos\left(\dfrac{\pi}{2}-3x\right)\\sin5x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{2}-3x+k2\pi\\5x=3x-\dfrac{\pi}{2}+k2\pi\\5x=\dfrac{\pi}{6}+k2\pi\\5x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
14 tháng 7 2021 lúc 17:36

3.

\(\Leftrightarrow1+sinx=cosx-cos3x+2sinx.cosx+1-2sin^2x\)

\(\Leftrightarrow sinx=2sin2x.sinx+2sinx.cosx-2sin^2x\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\1=2sin2x+2cosx-2sinx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4sinx.cosx+2cosx-2sinx-1=0\)

\(\Leftrightarrow2cosx\left(2sinx+1\right)-\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2cosx+1\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
14 tháng 7 2021 lúc 17:38

4.

\(\Leftrightarrow2sin2x.cosx+sin2x=2cos2x.cosx+cos2x\)

\(\Leftrightarrow sin2x\left(2cosx+1\right)=cos2x\left(2cosx+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sin2x=cos2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\tan2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\\\end{matrix}\right.\)

Mỹ Tâm
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 14:48

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

Ngân Nguyễn
Xem chi tiết
Vuy năm bờ xuy
1 tháng 6 2021 lúc 23:33

undefined

Phạm Bảo Ngân
Xem chi tiết
Võ Ngọc Phương
28 tháng 1 lúc 21:32

is not different

Sinh Viên NEU
6 tháng 2 lúc 20:43

is not different 

Nguyễn My
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2021 lúc 12:19

Đặt \(cosx-sinx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)

\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)

Pt trở thành:

\(t\left(1+\dfrac{1-t^2}{2}\right)+1=0\)

\(\Leftrightarrow t^3-3t-2=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)^2=0\Rightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=-1\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=-1\)

\(\Leftrightarrow\sqrt[]{2}cos\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow...\)

Ngô Trần Thoại Thy
Xem chi tiết
Minh Hồng
11 tháng 12 2021 lúc 17:35

0,3625

Nguyên Khôi
11 tháng 12 2021 lúc 17:36

\(\text{0,29 x 8 x 1,25 = ?}\)

\(0.29X8=2.32\)

\(2.32X1.25=\text{2.9}\)

Lihnn_xj
11 tháng 12 2021 lúc 17:36

0,29 x 8 x 1,25 

= 0.29 x 10

 = 2,9 

Đỗ Tiến Dũng
Xem chi tiết