Rút gọn biểu thức : A = cos540.cos 40 – cos360.cos860
A. sin320
B. tan 420
C. cos420
D. cos 580
Rút gọn các biểu thức:
a) $\sin 40^\circ - \cos 50^\circ$.
b) $\sin^2 30^\circ + \sin^2 40 ^\circ + \sin^2 50^\circ + \sin^2 60^\circ$.
c) $\cos^2 10^\circ - \cos^2 20^\circ + \cos^2 30^\circ - \cos^2 40 ^\circ - \cos^2 50^\circ - \cos^2 70^\circ + \cos^2 80^\circ$.
a) sin 40 - cos 50 =0
b) sin230 + sin240 + sin250 + sin260 = 2
c) cos210 - cos220 + cos230 - cos240 - cos250 - cos270 + cos280 = - sin230
\(a.sin40^o-cos50^o=sin40^o-sin40^o=0\)
\(b.sin^230^o+sin^240^o+sin^250^o+sin^260^o=\left(sin^230^0+sin^260^o\right)+\left(sin^240^0+sin^250^o\right)=\left(sin^230^0+cos^230^o\right)+\left(sin^240+cos^240^o\right)=1+1=2\)
\(c.\left(cos^210^o+cos^280^o\right)-\left(cos^220^o+cos^270^0\right)-\left(cos^240^o-cos^250^o\right)+cos^230^o=\left(cos^210^o+sin^210^o\right)-\left(cos^220^o+sin^220^o\right)-\left(cos^240^o+sin^240^0\right)+cos^230^0=1-1-1+\dfrac{3}{4}=-\dfrac{1}{4}\)
Đề: Rút gọn biểu thức sau: D= (1+ cosa + cos 2a + cos 3a)/ (cosa + 2 cos ²a - 1)
Lời giải:
$D=\frac{1+\cos a+2\cos ^2a-1+4\cos ^3a-3\cos a}{\cos a+2\cos ^2a-1}$
$=\frac{4\cos ^3a+2\cos ^2a-2\cos a}{\cos a+2\cos ^2a-1}$
$=\frac{2\cos a(\cos a+2\cos ^2a-1)}{\cos a+2\cos ^2a-1}$
$=2\cos a$
Rút gọn biểu thức sau:
a) \(\left(1-\cos a\right)\left(1+\cos a\right)\)
b) \(1+\sin^2a+\cos^2a\)
c) \(\sin a-\sin a\cos^2a\)
d) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
e)\(\tan^2a-\sin^2a\tan^2a\)
f) \(\cos^2a+\tan^2a\cos^2a\)
GIẢI GIÚP MIK VS M.N!!!!!!!
Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:
\(\cos \left( {a + b} \right) + \cos \left( {a - b} \right);\,\,\cos \left( {a + b} \right) - \cos \left( {a - b} \right);\,\,\sin \left( {a + b} \right) + \sin \left( {a - b} \right)\)
\(\begin{array}{l}\cos \left( {a + b} \right) + \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b + \sin a.\sin b + \cos a.\cos b = 2\cos a.\cos b\\\cos \left( {a + b} \right) - \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b - \sin a.\sin b - \cos a.\cos b = - 2\sin a.\sin b\\\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b + \sin a.\cos b - \cos a.\sin b = 2\sin a.\cos b\end{array}\)
Rút gọn các biểu thức sau :
a)\(\dfrac{1+\sin4a-\cos4a}{1+\cos4a+\sin4a}\)
b) \(\dfrac{1+\cos a}{1-\cos a}\tan^2\dfrac{a}{2}-\cos^2a\)
c) \(\dfrac{\cos2x-\sin4x-\cos6x}{\cos2x+\sin4x-\cos6x}\)
rút gọn hộ biểu thứcnày vs 4.cos(a-b).cos(b-c).cos(c-a)
ta có :
\(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a\)
Rút gọn biểu thức A= cos⁴ ∝ + cos² ∝ . sin² ∝ + sin² ∝ bằng?
A= cos⁴ ∝ + cos² ∝ . sin² ∝ + sin² ∝
=cos⁴ ∝+(cos² ∝+1).sin² ∝
=cos⁴ ∝+(1+cos⁴ ∝)(1-cos⁴ ∝)
=cos⁴ ∝+1-cos⁴ ∝=1
Rút gọn các biểu thức:
a)\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b)\(\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\)
c)\(\sin\alpha.\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
d)\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2