x + xy/2 = 0.22
1.5x + 0.5y = 0.27
đkxđ x > 0 y > 0
em quên đkxđ sr
x + xy2 = 0.22
1.5x + 0.5y = 0.27
giai pt voi x, y > 0
tìm ĐKXĐ của phân thức A = \(\dfrac{1}{x^2-xy+y^2}\)
giải hệ phương trình:
(0.3x + 0.5y = 3
(1.5x - 2y = 1.5
(x,y) = ?
pls giải nhanh
\(\left\{{}\begin{matrix}0,3x+0,5y=3\\1,5x-2y=1,5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1,5x+2,5y=15\\1,5x-2y=1,5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4,5y=13,5\\1,5x-2y=1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\1,5x=2y+1,5=2\cdot3+1,5=7,5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=5\\y=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}0,3x+0,5y=3\\1,5x-2y=1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1,5x+2,5y=15\\1,5x-2y=1,5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4,5y=-13,5\\1,5x-2y=1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13,5}{4,5}=3\\1,5x-2.3=1,5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1,5+6}{1,5}=5\end{matrix}\right.\\ Vậy:\left(x;y\right)=\left(5;3\right)\)
sao từ 1,5x+2,5y=15 tính ra 4.5y=-13,5 vậy ạ
đặt đầu là x, thân là y, có hệ pt: x-0.5y = 150 và y-x = 150, ra được đầu 450, thân 600, tổng là 1,2 kg!
C/m các biể thức sau ko phụ thuộc và giá trị của biến thuộc ĐKXĐ:
a) \(\left(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
b) \(\left(\frac{\sqrt{x}}{\sqrt{xy-y}}+\frac{2\sqrt{x}+\sqrt{y}}{\sqrt{xy}-x}\right).\frac{x\sqrt{y}-y\sqrt{x}}{x+2\sqrt{xy}+y}\)
Cho biểu thức
B =\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2x-x^2}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2}{x+2}+x-2\right)\)
a) tìm ĐkXĐ rồi rút gọn B
b) Tìm x để B = 0
c) tìm x để b < 0
d) tìm x để b > 0
e)tìm x để B ≥ 5
sr lc nãy e ghi sai đề mn giải giúp e bài này nha e cần gấp ❤
a) điều kiện xác định : \(x\ne\pm2;x\ne0\)
ta có : \(B=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2x-x^2}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2}{x+2}+x-2\right)\)
\(\Leftrightarrow B=\left(\dfrac{x^2-2x-4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2+x^2-4}{x+2}\right)\)
\(\Leftrightarrow B=\left(\dfrac{2x^2-4x-4}{x\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)=\dfrac{x^2-2x-2}{3x^2-6x}\)
b) để \(B=0\Leftrightarrow x^2-2x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)
bn kiểm tra lại đề nha nếu như thế này phải sử dụng kiến thức lớp 10 đó bn
\(\dfrac{\sqrt{x}.\sqrt{y}}{\sqrt{xy}-2\sqrt{y}}\)
tìm đkxđ
ĐKXĐ: \(\sqrt{y}\left(\sqrt{x}-2\right)< >0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y>0\\x\in[0;+\infty)\backslash\left\{4\right\}\end{matrix}\right.\)
Tìm ĐKXĐ rồi rút gon:
\(B=\dfrac{\sqrt{x^3}}{\sqrt{xy}-2y}-\dfrac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\dfrac{1-x}{1-\sqrt{x}}\)
Mọi người giúp em với
Lời giải:
ĐK: \(x\geq 0; x\neq 1; x\neq 4y; y>0\)
\(B=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{(x-2\sqrt{xy})+(\sqrt{x}-2\sqrt{y})}.\frac{(1-\sqrt{x})(1+\sqrt{x})}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{(\sqrt{x}-2\sqrt{y})(\sqrt{x}+1)}.(1+\sqrt{x})\)
\(=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{\sqrt{x}-2\sqrt{y}}\)
\(=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}\)
\(=\frac{x(\sqrt{x}-2\sqrt{y})}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}=\frac{x}{\sqrt{y}}\)
1,cho pt P=\(\dfrac{(\sqrt{x}-\sqrt{y})^2-4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
a, tìm ĐKXĐ và rút gọn P
b, tìm giá trị của P khi y=4-2\(\sqrt{3}\)
Lời giải:
a) ĐK: \(x>0; y> 0\)
\(P=\frac{(\sqrt{x}-\sqrt{y})^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\frac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})}{\sqrt{xy}}\)
\(=\frac{x+2\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})\)
\(=\frac{(\sqrt{x}+\sqrt{y})^2}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})=(\sqrt{x}+\sqrt{y})-(\sqrt{x}-\sqrt{y})=2\sqrt{y}\)
b)
Khi \(y=4-2\sqrt{3}=3+1-2\sqrt{3.1}=(\sqrt{3}-1)^2\)
\(\Rightarrow \sqrt{y}=\sqrt{3}-1\)
\(\Rightarrow P=2\sqrt{y}=2(\sqrt{3}-1)\)