Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Thảo Lương
Xem chi tiết
Trần Phương Anh
7 tháng 11 2021 lúc 20:51

ĐKXĐ: x>0; x≠1

A = 2(1√x−1−1√x):(√x+1x2−x)=2[√x−√x+1(√x−1)√x]:√x+1x(√x−1)(√x+1)2(1x−1−1x):(x+1x2−x)=2[x−x+1(x−1)x]:x+1x(x−1)(x+1)

=2√x.(√x−1):1x(√x−1)=2√x=2x.(x−1):1x(x−1)=2x

b) Để A = √20122012 thì 2√x=√20122x=2012

⇔2√x=2√503⇔2x=2503

⇔x=503⇔x=503 (thỏa mãn điều kiện)

Vậy x=503

Thảo Ngân
Xem chi tiết
Phạm Thị Thùy Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:44

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

need help
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 11:17

C=|x-2021|+|1-x|>=|x-2021+1-x|=2020

Dấu = xảy ra khi 1<=x<=2021

ngọc linh
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 12 2021 lúc 22:03

Đề sai à? check lại đề đi

Thiên Yết
Xem chi tiết
Hà Phương Linh
Xem chi tiết
Nguyễn Minh Quang
10 tháng 1 2021 lúc 22:04

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)

Khách vãng lai đã xóa
Nguyễn Tuấn Anh
Xem chi tiết
Kim Thạc Trân 💗🤍🧡
Xem chi tiết
Akai Haruma
4 tháng 9 2021 lúc 18:41

1. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{x-1}=5-\sqrt{x-4}$

$\Rightarrow x-1=25+x-4-10\sqrt{x-4}$

$\Leftrightarrow 22=10\sqrt{x-4}$

$\Leftrightarrow 2,2=\sqrt{x-4}$

$\Leftrightarrow 4,84=x-4\Leftrightarrow x=8,84$

(thỏa mãn)

2. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow (2x-2\sqrt{x})-(5\sqrt{x}-5)=0$

$\Leftrightarrow 2\sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0$

$\Leftrightarrow (\sqrt{x}-1)(2\sqrt{x}-5)=0$

$\Leftrightarrow \sqrt{x}-1=0$ hoặc $2\sqrt{x}-5=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{25}{4}$ (tm)

Akai Haruma
4 tháng 9 2021 lúc 18:44

3. ĐKXĐ: $x\geq 3$

Bình phương 2 vế thu được:

$3x-2+2\sqrt{(2x+1)(x-3)}=4x$
$\Leftrightarrow 2\sqrt{(2x+1)(x-3)}=x+2$

$\Leftrightarrow 4(2x+1)(x-3)=(x+2)^2$

$\Leftrightarrow 4(2x^2-5x-3)=x^2+4x+4$
$\Leftrightarrow 7x^2-24x-16=0$

$\Leftrightarrow (x-4)(7x+4)=0$

Do $x\geq 3$ nên $x=4$

Thử lại thấy thỏa mãn

Vậy $x=4$

Akai Haruma
4 tháng 9 2021 lúc 18:45

4. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+2021\sqrt{x-4}=0$

$\Leftrightarrow (\sqrt{x}-2)^2+2021\sqrt{x-4}=0$

Ta thấy, với mọi $x\geq 4$ thì:

$(\sqrt{x}-2)^2\ge 0$

$2021\sqrt{x-4}\geq 0$ 

Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)