Cho tam giác ABC và điểm M thỏa mãn 2 M A → + M B → = C A → . Khẳng định nào sau đây là đúng?
A. M trùng A
B. M trùng B.
C. M trùng C
D. M là trọng tâm của tam giác ABC.
1.Cho 2 điểm A(-2;1) và B (2;4). Tìm điểm M nằm trên trục Ox thỏa mãn AM +MB đạt giá trị nhỏ nhất .
2. Cho tam giác ABC . Tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}\cdot\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
Help me
1.
Lấy điểm A' đối xứng với A qua Ox \(\Rightarrow A\left(-2;-1\right)\)
M có tọa độ \(M\left(x;0\right)\)
Ta có \(AM+MB=A'M+MB\ge AB=\sqrt{4^2+5^2}=\sqrt{41}\)
\(min=41\Leftrightarrow M,A',B\) thẳng hàng
\(\Leftrightarrow\overrightarrow{A'M}=k\overrightarrow{A'B}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=k.4\\1=k.5\end{matrix}\right.\Rightarrow x=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};0\right)\)
2.
Gọi N là trung điểm BC
\(\overrightarrow{MA}.\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
\(\Leftrightarrow2\overrightarrow{MA}.\overrightarrow{MN}=0\)
\(\Leftrightarrow2MA.MN.cosAMN=0\)
\(\Leftrightarrow\left[{}\begin{matrix}MA=0\\MN=0\\cosAMN=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}M\equiv A\\M\equiv N\\\widehat{AMN}=90^o\end{matrix}\right.\)
\(\Rightarrow M\) thuộc đường tròn đường kính AN
a) Cho tam giác ABC. Chứng minh rằng: . b) Cho tam giác ABC. Tìm điểm M thỏa mãn hệ thức:
Cho tam giác ABC và đường thẳng d // BC cắt AB và AC tại M và N thỏa mãn AM = CN. Biết M(- 4 ; 0) ; C (5 ; 2). Chân đường phân giác trong góc A là D (0 ; -1). Tìm tọa độ hai điểm A và B
Cho tam giác ABC nhọn, các đường cao BD, CE. Gọi M là trung điểm của BC.
a) Chứng minh tam giác MDE cân tại M.
b) Chứng minh góc DME = 180 độ − 2 góc A.
c) tam giác ABC cần thỏa mãn điều kiện gì để tam giác MDE đều.
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
Cho tam giác ABC có AB=4, AC = 5 , BAC =120°. G là trọng tâm của tam giác ABC, điểm E thỏa mãn vector AE=2/3 vector EC
a) Biểu diễn BE theo AB,AC.
b) Tìm tập hợp điểm I thỏa mãn đẳng thức vec tơ |IA+IG|=|IA–IG|.
c) M là một điểm khác G thỏa(GC-GB)(MA+MB+MC)=0. Chứng minh MG vg BC.
vector het nha
a: \(\overrightarrow{AE}=\dfrac{2}{3}\overrightarrow{EC}\)
=>E nằm giữa A và C và AE=2/3EC
Ta có: AE+EC=AC(E nằm giữa A và C)
=>\(AC=\dfrac{2}{3}EC+EC=\dfrac{5}{3}EC\)
=>\(\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}EC}{\dfrac{5}{3}EC}=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)
=>\(AE=\dfrac{2}{5}AC\)
=>\(\overrightarrow{AE}=\dfrac{2}{5}\cdot\overrightarrow{AC}\)
\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}\)
\(=-\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC}\)
b: \(\left|\overrightarrow{IA}+\overrightarrow{IG}\right|=\left|\overrightarrow{IA}-\overrightarrow{IG}\right|\)
=>\(\left[{}\begin{matrix}\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IA}-\overrightarrow{IG}\\\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IG}-\overrightarrow{IA}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2\cdot\overrightarrow{IG}=\overrightarrow{0}\\2\cdot\overrightarrow{IA}=\overrightarrow{0}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}I\equiv G\\I\equiv A\end{matrix}\right.\)
cho tam giác abc và 2 điểm M,N thỏa mãn điều kiện MA+3MC=0,NA+2NB+3NC=0,chưmgs minh b,m,n thẳng hàng
vecto NA+2*vecto NB+3*vecto NC=vecto 0
=>2*vecto NB=-vecto NA-3 vecto NC
=>vecto NB=-1/2*vecto NA-3/2*vecto NC
=-1/2(vecto NM+vecto MA)-3/2(vecto NM+vecto MC)
=-2vecto NM-1/2vecto MA-3/2vecto MC
=-2 vecto NM-1/2(vecto MA+3 vecto MC)
=-2 vecto NM
=>vecto BN=2*vecto MN
=>B,M,N thẳng hàng
Cho tam giác ABC và điểm M thỏa mãn M B → + M C → = A B → . Tìm vị trí điểm M
A. M là trung điểm của AC
B.M là trung điểm của AB
C.M là trung điểm của BC
D.M là điểm thứ tư của hình bình hành ABCM
Cho tam giác ABC và điểm M thỏa mãn M B → + M C → = A B → Tìm vị trí điểm M.
A. M là trung điểm của AC
B.M là trung điểm của AB
C.M là trung điểm của BC
D.M là điểm thứ tư của hình bình hành ABCM
Cho tam giác ABC và điểm M thỏa mãn M B → + M C → = A B → . Tìm vị trí điểm M.
A. M là trung điểm của AC
B.M là trung điểm của AB
C.M là trung điểm của BC
D.M là điểm thứ tư của hình bình hành ABCM