Cho cấp số cộng ( u n ) có số hạng đầu u 1 = 2 và công sai d = 5. Giá trị của u 4 bằng
A. 22
B. 17
C. 12
D. 250
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Cho cấp số cộng (un) có u4=-12, u14=18. Tính tổng 16 số hạng đầu tiên cua cấp số cộng này
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
cho (Un) là cấp số cộng U3 +U13=80 .tổng 15 số hạng đầu tiên của cấp số cộng đố bằng bao nhiêu
Cho cấp số cộng (un) biết \(\left\{{}\begin{matrix}u_3=5\\S_8=48\end{matrix}\right.\) . Tìm số hạng đầu tiên và tổng 20 số hạng đầu của cấp số công đã cho.
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là:
Cho cấp số cộng có tổng n số hạng đầu là S n = 3 n 2 + 4 n , n ∈ ℕ * . Giá trị của số hạng thứ 10 của cấp số cộng là
A. u 10 = 55
B. u 10 = 67
C. u 10 = 61
D. u 10 = 59
Đáp án C
Gọi số hạng đầu và công sai u 1 , d ta có S n = n 2 2 u 1 + n - 1 d = 3 n 2 + 4 n
⇒ 2 u 1 - d + n d = 8 + 6 n ⇒ 2 u 1 - d = 8 d = 6 ⇒ u 1 = 7 d = 6 ⇒ u 10 = 61 .
Cho cấp số cộng có tổng n số hạng đầu là S n = 3 n 2 + 4 n , n ∈ ℕ * . Giá trị của số hạng thứ 10 của cấp số cộng là
A. u 10 = 67 .
B. u 10 = 61 .
C. u 10 = 59 .
D. u 10 = 55 .
Chọn B
Ta có: S n = 3 n 2 + 4 n = n ( 7 + 6 n + 1 ) 2
⇒ u n = 6 n + 1 ⇒ u 10 = 61
Cho cấp số cộng có tổng n số hạng đầu là S n = 3 n 2 + 4 n , n ∈ ℕ * . Giá trị của số hạng thứ 10 của cấp số cộng là
A. u 10 = 67
B. u 10 = 61 .
C. u 10 = 59 .
D. u 10 = 55
Cho cấp số cộng có tổng n số hạng đầu là S n = 3 n 2 + 4 n với n ∈ ℕ + . Giá trị của số hạng thứ 10 của cấp số cộng là
A. u 10 = 55.
B. u 10 = 67.
C. u 10 = 59.
D. u 10 = 61.
Cho u n là một cấp số cộng có tổng n số hạng đầu tính được theo công thức S n = 5 n 2 + 3 n với n ∈ N * . Số hạng đầu u 1 và công sai d của cấp số cộng đó là
A. u 1 = - 8 d = 10
B. u 1 = - 8 d = - 10
C. u 1 = 8 d = 10
D. u 1 = 8 d = - 10