Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Nguyên
Xem chi tiết
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:21

Câu 1.

\(\sqrt{2},\left(\sqrt{2}\right)^2,...,\left(\sqrt{2}\right)^n\) lập thành cấp số nhân có \(u_1=\sqrt{2}=q\) nên

\({u_n} = \sqrt 2 .\dfrac{{1 - {{\left( {\sqrt 2 } \right)}^n}}}{{1 - \sqrt 2 }} = \left( {2 - \sqrt 2 } \right)\left[ {{{\left( {\sqrt 2 } \right)}^n} - 1} \right] \to \lim {u_n} = + \infty \)\(\left\{{}\begin{matrix}a=2-\sqrt{2}>0\\q=\sqrt{2}>1\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:25

Câu 3.

Ta có biến đổi:

\(\lim \left( {\dfrac{{{n^2} - n}}{{1 - 2{n^2}}} + \dfrac{{2\sin {n^2}}}{{\sqrt n }}} \right) = \lim \dfrac{{{n^2} - n}}{{1 - 2{n^2}}} = \dfrac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:27

Câu 4.

\(\lim \dfrac{{1 + 2 + 3 + ... + n}}{{{n^2} + 2}} = \lim \dfrac{{n\left( {n + 1} \right)}}{{2\left( {{n^2} + 2} \right)}} = \dfrac{1}{2}\)

Khách vãng lai đã xóa
Vương Nguyên
Xem chi tiết
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:45

Câu 4.

\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)

\(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)

\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:41

Câu 5.

Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)

Khách vãng lai đã xóa
Vương Nguyên
Xem chi tiết
Akai Haruma
21 tháng 1 2020 lúc 21:43

$n$ tiến đến đâu vậy bạn?

Khách vãng lai đã xóa
Akai Haruma
21 tháng 1 2020 lúc 23:09

Câu 2:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)

Khách vãng lai đã xóa
Akai Haruma
21 tháng 1 2020 lúc 23:13

Câu 3:

Ta biết rằng $\lim_{x\to \infty}\frac{1}{x}=0\Rightarrow \lim_{x\to \infty}\frac{a}{x}=0$ với $a\in\mathbb{R}$

Do đó:

$\lim_{n\to \infty}\frac{1}{n^2}=0$

$\lim_{n\to \infty}\frac{2}{n^2}=0$

.....

$\lim_{n\to \infty}\frac{2n-1}{n^2}=\lim_{n\to \infty}(\frac{2}{n}-\frac{1}{n^2})=\lim_{n\to \infty}\frac{2}{n}-\lim_{n\to \infty}\frac{1}{n^2}=0-0=0$

Do đó:

$\lim_{n\to \infty}(\frac{1}{n^2}+...+\frac{2n-1}{n^2})=\lim_{n\to \infty}\frac{1}{n^2}+....+\lim_{n\to \infty}\frac{2n-1}{n^2}=0+0+...+0=0$

Khách vãng lai đã xóa
Hán Bình Nguyên
Xem chi tiết
Vương Nguyên
Xem chi tiết
Nguyễn Thành Trương
23 tháng 1 2020 lúc 20:00

Câu 1.

\(y = \dfrac{{n + \sin 2n}}{{n + 5}} = \dfrac{{\dfrac{n}{n} + \dfrac{{\sin 2n}}{n}}}{{\dfrac{n}{n} + \dfrac{5}{n}}} = \dfrac{{1 + \dfrac{{2.\sin 2n}}{{2n}}}}{{1 + \dfrac{5}{n}}}\\ \Rightarrow \lim y = \dfrac{{1 + 0}}{{1 + 0}} = 1 \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
23 tháng 1 2020 lúc 20:05

Câu 2.

\(\lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}}\)

\( - 1 \le \sin n \le 1; - 1 \le \cos n \le 1 \Rightarrow \) khi \(x \to \infty \) thì \(3\sin n + 4{\mathop{\rm cosn}\nolimits} = const \)

\(\Rightarrow T = \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} = 0 \)

Chú thích: $const$ là kí hiệu hằng số, giống như dạng giới hạn L/vô cùng.

Khách vãng lai đã xóa
Nguyễn Thành Trương
23 tháng 1 2020 lúc 20:08

Câu 3.

\(\lim \dfrac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}} = \lim \dfrac{{\left( {1 + a + {a^2} + ... + {a^n}} \right)\left( {1 - a} \right)\left( {1 - b} \right)}}{{\left( {1 + b + {b^2} + ... + {b^n}} \right)\left( {1 - b} \right)\left( {1 - a} \right)}} = \lim \dfrac{{\left( {1 - {a^{n + 1}}} \right)\left( {1 - b} \right)}}{{\left( {1 - {b^{n + 1}}} \right)\left( {1 - a} \right)}} = \dfrac{{1 - b}}{{1 - a}}\)

Khách vãng lai đã xóa
Vương Nguyên
Xem chi tiết
dang thi khanh ly
Xem chi tiết
dang thi khanh ly
4 tháng 3 2020 lúc 0:23

3,\(\lim\limits\frac{3^n-4\times2^{n+1}-3}{3\times2^n+4^n}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
4 tháng 3 2020 lúc 22:50

Dấu ngoặc bạn sử dụng đấu ngoặc trên bàn phím đó, hoặc ô thứ 4 từ phải sang trên cửa sổ gõ công thức

\(lim\left(3^4.2^{n+1}-5.3^n\right)=lim\left[3^n\left(2.3^4\left(\frac{2}{3}\right)^n-5\right)\right]=+\infty\left(0-5\right)=-\infty\)

\(lim\frac{\left(n-2\right)^7\left(2n+1\right)^3}{\left(n^2+2\right)^5}=lim\frac{n^7\left(1-\frac{2}{n}\right)^7.n^3\left(2+\frac{1}{n}\right)^3}{n^{10}\left(1+\frac{2}{n^2}\right)^5}=lim\frac{\left(1-\frac{2}{n}\right)^7\left(2+\frac{1}{n}\right)^3}{\left(1+\frac{2}{n^2}\right)^5}=\frac{1.2}{1}=2\)

\(lim\frac{3^n-8.2^n-3}{3.2^n+4^n}=lim\frac{\left(\frac{3}{4}\right)^n-8\left(\frac{2}{4}\right)^n-3\left(\frac{1}{4}\right)^n}{3\left(\frac{2}{4}\right)^n+1}=\frac{0}{1}=0\)

Khách vãng lai đã xóa
Đỗ Quang Minh
Xem chi tiết
Lê Trung Hiếu
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:27

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).

d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).

e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).