Có bao nhiêu giá trị thực của tham số m để phương trình m . 3 x 2 - 3 x + 2 + 3 4 - x 2 = 3 6 - 3 x + m 1 có đúng 3 nghiệm phân biệt
A.4
B.2
C.3
D.1
Có bao nhiêu giá trị nguyên của tham số m để phương trình 6 + x - 2 - x - 3 + x - 6 - x - 5 - m = 0 có nghiệm thực
A. 0
B. 2
C. 3
D. 1
Có bao nhiêu giá trị nguyên của tham số m để phương trình
m + 3 . m + cos x 3 3 = cos x có nghiệm thực?
A. 2.
B. 7.
C. 5.
D. 3.
Cho phương trình \(x^2-2x-2\left|x-m\right|+1=0\) Có bao nhiêu giá trị của tham số m để có 3 nghiệm thực phân biệt
Có bao nhiêu giá trị thực của tham số m để phương trình m .3 x 2 − 3 x + 2 + 3 4 − x 2 = 3 6 − 3 x + m có đúng 3 nghiệm thực
A. 4
B. 2
C. 3
D. 1
Có bao nhiêu giá trị thực của tham số m để phương trình ( x - 1 ) ( x - 3 ) ( x - m ) = 0 có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
A. 2
B. 1
C. 4
D. 3
Có bao nhiêu giá trị thực của tham số m để phương trình ( x - 1 ) ( x - 3 ) ( x - m ) = 0 có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
A. 2
B. 1
C. 4
D. 3
Chọn đáp án D
Phương pháp
Cho ba số a, b, c lập thành CSN thì ta có: b 2 = a c .
Cách giải
Ta có: ( x - 1 ) ( x - 3 ) ( x - m ) = 0
Phương trình đã cho có 3 nghiệm phân biệt
+) Giả sử 1; 3; m lập thành 1 CSN tăng
+) Giả sử m; 1; 3 lập thành 1 CSN tăng
+) Giả sử 1; m; 3 lập thành 1 CSN tăng
Vậy có 3 giá trị m thỏa mãn
Có bao nhiêu giá trị nguyên của tham số m để phương trình m + 3 m + 3 cosx 3 3 = cosx có nghiệm thực
A. 5
B. 7
C. 3
D. 2
Cho phương trình 2 x - 1 2 . log 2 x 2 - 2 x + 3 = 4 x - m log 2 2 x - m + 2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn - 2019 ; 2019 để phương trình có đúng 2 nghiệm phân biệt.
A. 4036
B. 4034
C. 4038
D. 4040
Cho phương trình: (3. 2x. lg x - 12lg x - 2x + 4)\(\sqrt{5^x-m}\) = 0 (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để pt đã cho có đúng 2 nghiệm phân biệt?
\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))
Xét (1):
\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)
\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)
\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm
Để pt đã cho có đúng 2 nghiệm phân biệt ta có các TH sau:
TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)
TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định
(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)
Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)
\(\Rightarrow2< log_5m< \sqrt[3]{10}\)
\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)
\(\Rightarrow\) \(32-26+1\) giá trị nguyên