6005 d m 2 = …… m 2 ……. d m 2
A. 6 m 2 5 d m 2
B. 60 m 2 50 d m 2
C. 60 m 2 5 d m 2
D. 6 m 2 50 d m 2
Cho hai đường thẳng d và d'. Tìm m để hai đường thẳng: cắt nhau, song song, đồng quy
a) d: 2mx+(m-1).y-2=0, d': (m+2).x+(2m+1).y-(m+2)=0
b) d: (m-2).x+(m-6).y+m-1=0, d': (m-4).x+(2m-3).y+m-5=0
cho đường thẳng (d) có phương trình : 2(m-1)x + (m-2)y=2 . Tìm giá trị của m để (d) cách gốc tọa độ một khoảng lớn nhất. A.5/6. B.6/5 C.-5/6. D.-6/5
Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
Rút gọn biểu thức:
a) C = 6(c – d) ( c + d ) 2 + 12 ( c - d ) 2 (c + d) + ( c + d ) 3 + 8 ( c - d ) 3 ;
b) D = ( m – n ) 3 – ( n + p ) 3 -3 ( n + p ) 2 (n – m) – 3(n + p) ( n – m ) 2 .
a) C = c + d + 2 ( c − d ) 3 = ( 3 c − d ) 3 .
b) D = m − n ( n + p ) 3 = ( m − 2 n − p ) 3 .
5. Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x0; y0) cho trước. y = (2 - m )x + m,Thì đồ thị hàm số đi qua A(-1; 6) 6. Tìm điều kiện của m để:Cho( d) :y = (m − 2)x + n (m ≠ 2). a) Đường thẳng (d) cắt đường thẳng (d1): −2y + x − 5 = 0 b) Đường thẳng (d) song song với đường thẳng(d2): 3x + y = 1 c) Đường thẳng (d) trùng với đường thẳng (d3): y = 2x + 3 7. Cho hàm số y = ( m+2)x + n-1 ( m -2) có đồ thị là đừờng thẳng (d) Cho n= 6,Gọi giao điểm của (d) với hai trục toạ độ là A, B.Tìm m để tam giác ABC có diện tích bằng 6
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
1. Cho a+5/a-5/b+6/b-6(a khác 5, b khác 6). C/m rằng a/b=5/6.
2.C/m rằng nếu a/b=c/d thì a^2+b^2/c^2+d^2=a.b/c.d.
Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)Tìm điều kiện của m để (d) cắt (d') tại một điểm trên trục tung
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
Cho đường thẳng \(y=\left(m-2\right)x+2\) (d)
a, Tìm điểm cố định mà đường thẳng d luôn đi qua với \(\forall\) m
b, Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1
c, Tìm m để hai điểm A(2; 2); B(-6; 2) nằm về hai phía của d và cách đều d
Gọi M(xo,yo) là điểm cố định của đồ thị hàm số d
Khi đó (m-2)xo +2 = yo
⇒(m-2)xo+2-yo=0
⇒\(\left\{{}\begin{matrix}x_o=0\\2-y_o=0\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x_o=0\\y_o=2\end{matrix}\right.\)
Vậy đồ thị hàm số d luôn đi qua điểm cố định M(0;2)
Cho x=0 ⇒y=2
⇒A(0;2)
⇒OA=\(\left|2\right|\)
Cho y=0 ⇒x=\(-\frac{2}{m-2}\)
⇒B(\(-\frac{2}{m-2}\);0)
⇒OB=\(\left|\frac{2}{m-2}\right|\)
ADHT về cạnh và đường cao vào △AOB vuông ở O đường cao OH có
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
⇒\(\frac{1}{1^2}=\frac{1}{2^2}+\frac{\left(m-2\right)^2}{2^2}\)
⇒1=\(\frac{\left(m-2\right)^2}{4}\)
⇒(m-2)2 +1=4
⇒m2-4m+1=0
⇒\(\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
Vậy...
Vũ Minh Tuấn, Minh An, Băng Băng 2k6, tth, Phạm Lan Hương, Nguyễn Ngọc Linh, Lê Ngọc Khôi, Aki Tsuki, Nguyễn Thị Diễm Quỳnh, Ichigo, HISINOMA KINIMADO, No choice teen, Nguyễn Lê Phước Thịnh, Lê Thị Thục Hiền, Akai Haruma, Nguyễn Huy Tú, Nguyễn Huy Thắng, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Mysterious Person, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Phương An, Trần Việt Linh, @Nk>↑@,...
Cho 6 só nguyên dương a<b<c<d<m<n
chứng minh rằng : \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)