Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa a<b<c<d<m<n
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)<\(\frac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa: a < b < c < d < m < n.
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)
Cho 6 số nguyên dương thỏa mãn: a<b<c<d<m<n
Chứng minh rằng : a+b/a+b+c+d+m+n < 1/3
Cho 6 số nguyên dương thỏa mãn: a<b<c<d<m<n
Chứng minh rằng : a+b/a+b+c+d+m+n < 1/3
cho 6 số nguyên dương a<b<c<d<m<n.
Chứng minh rằng: a+c+m/a+b+c+d+m+n < 1/2
Tìm các số nguyên dương a,b,c,d phân biệt thỏa mãn:
a+\(\dfrac{2\cdot b}{b+\dfrac{c}{c+\dfrac{d}{d+1}}}\)
Bạn nào làm nhanh mình tick cho.
Dấu ở giữa 2 và b là dấu nhân nhé!
Cho 6 số nguyên dương a < b < c < d < m < n
Chứng minh rằng: (a+c+m)/(a+b+c+d+m+n) < 1/2
Cho 6 số nguyên dương thỏa mãn : a<b<c<d<m<n
Chứng minh rằng: \(\frac{a+d}{a+b+c+d+m+n}
Cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh rằng : \(\frac{a+c+m}{a+b+c+d++m+n}< \frac{1}{2}\)