Cho đường thẳng d: y = ( k – 2 ) x – 1 . Tìm k để d cắt 2 trục tọa độ tạo thành tam giác có diện tích bằng 1
A. k = 5 2
B. k = 3 2
C. k = 1
D. Cả A và B đều đúng
Cho đường thẳng y=(k+1)x+k (d) a) Tìm giá trị của k để đường thẳng (d) đi qua gốc tọa độ. b) Tìm giá trị của k để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1- căn2 c) Tìm giá trị của k để đường thẳng (d) song song với đường thẳng y=(căn3+1)x+3
a: Thay x=0 và y=0 vào \(\left(d\right)\), ta được:
k=0
x +1 ; (d'') y = (k+3)x-2
a) tìm k để (d);(d');(d'') đồng quy
Đề bị lỗi hiển thị rồi bạn. Bạn xem lại.
cho 3 đường thẳng (d) y = x+2 ; (d') y = \(\dfrac{3}{2}\)x +1 ; (d'') y = (k+3)x-2
a) tìm k để (d);(d');(d'') đồng quy
Tọa độ giao điểm của (d) và (d') là:
\(\left\{{}\begin{matrix}\dfrac{3}{2}x+1=x+2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=1\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1:\dfrac{1}{2}=2\\y=2+2=4\end{matrix}\right.\)
Thay x=2 và y=4 vào (d''), ta được:
(k+3)*2-2=4
=>2(k+3)=6
=>k+3=3
=>k=0
Cho hàm số y=(2k-1)x+k (d)
a, Tìm k để đường thẳng (d) đi qua gốc tọa độ
b, Tìm k để đường thẳng (d) cắt trục hoành tại điểm có hoành độ = 3
c, Tìm k để đường thẳng (d) song song với đường thẳng y= 3/5x+4
d, Tìm k để điểm M (-3;2) thuộc đồ thị hàm số đã cho
a, b=k=0
b,(2k-1).3+k=0 => 3k=3 => k =1
c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5
d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5
cho đường thẳng y= (k+1)x+k
a. tìm giá trị của k để đường thẳng (d) đi qua điểm (1;2)
b.tìm giá trị của k để đường thẳng (d)song song với đường thẳng y= 2x+3
c. tìm điểm cố định mà (d) luôn đi qua với mọi k
a) (d) đi qua điểm (1;2)
<=> 2 = k + 1 + k
<=> 1 = 2k
<=> k = 0,5
Vậy k = 0,5 thì (d) đi qua (1;2)
b) Để (d) // đgth y = 2x + 3
\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)
Vậy k =1 thì (d) // đgth y = 2x +3
c) Gọi điểm cố định là (d) đi qua là (x0;y0)
Ta có y0 = ( k +1) x0 + k
<=> y0 = kx0 + x0+k
<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k
Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)
Điểm cố định (d) luôn đi qua là ( -1;-1)
Trong mặt phẳng tọa độ cho (d) \(y=\frac{-2k}{k-1}x+\frac{2}{k-1}\)
a. Tìm k để đường thẳng (d)\(//\) \(y=\sqrt{3}x\)
b. Tìm k để khoảng cách từ gốc tọa độ tới đường thẳng (d) lớn nhất.
Bài 3: Cho đường thẳng y= (k+1)x+k (1)
a) Tìm k để (1) đi qua gốc tọa độ
b) Tìm k để (1) cắt trục tung tại điểm có tung độ bằng \(1-\sqrt{2}\)
c) Tìm k để (1) song song với đường thẳng y= \(\left(\sqrt{3}+1\right)x+3\)
a: Thay x=0 và y=0 vào (1), ta được:
k=0
c: Để (1)//\(y=\left(\sqrt{3}+1\right)x+3\), ta được:
\(\left\{{}\begin{matrix}k+1=\sqrt{3}+1\\k\ne3\end{matrix}\right.\Leftrightarrow k=\sqrt{3}\)
Trên mặt phẳng toạ độ cho đường thẳng (d) có phương trình: 2kx + (k – 1)y = 2 (k là tham số)
1. Tìm k để đường thẳng (d) song song với đường thẳng y = ? Khi đó hãy tính góc tạo bởi (d) và tia Ox.
2. Tìm k để khoảng cách từ gốc toạ độ đến đường thẳng (d) là lớn nhất?
Trên mặt phẳng toạ độ cho đường thẳng (d) có phương trình: 2kx + (k – 1)y = 2 (k là tham số)
1. Tìm k để đường thẳng (d) song song với đường thẳng y = ? Khi đó hãy tính góc tạo bởi (d) và tia Ox.
2. Tìm k để khoảng cách từ gốc toạ độ đến đường thẳng (d) là lớn nhất?