Cho A = x x + 4 x - 4 + x - 4 x - 4 x 2 - 8 x + 16 với x > 4
A. A = 8
B. A = 7
C. A = 6
D. A = 0
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
Bài 1: Cho biểu thức A= \(\dfrac{x-4}{\sqrt{x}+2}\) B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) - \(\dfrac{\sqrt{x}-1}{2-\sqrt{x}}\)-\(\dfrac{9-x}{4-x}\) (x ≥ 0, x ≠ 4 )
a) Tính A khi x = \(\dfrac{1}{4}\)
b) Rút gọn B
c) Tìm các giá trị x nguyên sao cho A.B ≤ 2
(mink đag cần gấp)
a) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(A=\dfrac{x-4}{\sqrt{x}+2}\), ta được:
\(A=\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\left(\dfrac{1}{4}-\dfrac{16}{4}\right):\left(\dfrac{1}{2}+2\right)=\dfrac{-15}{4}:\dfrac{5}{2}\)
\(\Leftrightarrow A=\dfrac{-15}{4}\cdot\dfrac{2}{5}=\dfrac{-30}{20}=\dfrac{-3}{2}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(A=\dfrac{-3}{2}\)
b) Ta có: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-1}{2-\sqrt{x}}-\dfrac{9-x}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2+x+2\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4+9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Thay x = \(\dfrac{1}{4}\)vào bt A ta có: A= \(\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\dfrac{-15}{4}:\dfrac{5}{2}=\dfrac{-3}{2}\)
Vậy x = \(\dfrac{1}{4}\)vào bt A nhận giá trị là -3/2
b)
1) tìm số dư của các phép chia sâu đây :
a) x^4 -2 chia cho x^2+1
b)x^4+x^3+x^2+x chia cho x^2-1
c) x^99+x^55+x^11+x+7 cho x^2+1
2) tìm a để đa thức : x^2-3x+a chia hết cho x+2
4. tìm a và b để x^4+x^3+ax^2+4x+b chi hết cho x^2-2x+2
5. tìm số dư trong phép chia (x+2)(x+3)(x+4)(x+5)+2018 cho x^2 + 7x+3
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
Xác định a b sao cho
a, ( x^4 + ax + b) chia hết cho ( x^2 - 4)
b,(x^4 + 4) chia hết cho (x^2 + ax +b)
a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)
Áp dụng định lý Bê du có :
\(f\left(2\right)=f\left(-2\right)=0\)
\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)
\(\Leftrightarrow a=0\)
Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)
Vậy ...
b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.
a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương
Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)
b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)
hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)
1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó
Thì các bạn vít ra giấy là hỉu nk mong giải giúp mk cái
cho biểu thức A=x^3-x^2-4*x+4/x^4+x^3-x^2+x-2. tìm x thuộc Z dể A nguyên
Tìm a, b sao cho đa thức
a) f(x)=x4-x3-3x2+a x+b chia cho đa thức x2-x-2 dư 2x-3
b) g(x)=x4+a x +b chia cho đa thức x2-4
a) Ta có: \(x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Ap dung Be du ta co:
\(\left\{{}\begin{matrix}2^4-2^3-3.2^2+2a+b=2.2-3\\\left(-1\right)^4-\left(-1\right)^3-3.\left(-1\right)^2-a+b=2.\left(-1\right)-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\-a+b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
Câu b tương tự rồi nhé
cho a(x)=ax^4-3x^3-2ax^2+x+1.tìm a sao cho a(x) có giá trị là 4 tại x=1
Thay a(x)=4, x=1 vào ta có:
\(a\left(x\right)=ax^4-3x^3-2ax^2+x+1\\ \Rightarrow4=a.1^4-3.1^3-2a.1^2+1+1\\ \Rightarrow a-3-2a+1+1-4=0\\ \Rightarrow-a-5=0\\ \Rightarrow a=-5\)