Cho hai vectơ a → và b → . Biết a → = 2 , b → = 3 và a → , b → = 120 ° . Tính a → + b →
A. 7 + 3
B. 7 - 3
C. 7 - 2 3
D. 7 + 2 3
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 2 ; 3 và b → = 4 ; 1 . Tìm vectơ d → biết a → . d → = 4 và b → . d → = − 2 .
A. d → = 5 7 ; 6 7 .
B. d → = − 5 7 ; 6 7 .
C. d → = 5 7 ; − 6 7 .
D. d → = − 5 7 ; − 6 7 .
Gọi d → = x ; y .
Từ giả thiết, ta có hệ − 2 x + 3 y = 4 4 x + y = − 2 ⇔ x = − 5 7 y = 6 7 .
Chọn B.
Cho hai vectơ a → và b → . Biết a → = 2 , b → = 3 v à ( a → ; b → ) = 120 ° . Tính a → + b →
Cho hai vectơ cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) và điểm M như hình 3.
a) Hãy vẽ vectơ \(\overrightarrow {MN} = 3\overrightarrow a ,\overrightarrow {MP} = - 3\overrightarrow b \)
b) Cho biết mỗi ô có cạnh bằng 1. Tính: \(\left| {3\overrightarrow b } \right|,\left| { - 3\overrightarrow b } \right|,\left| {2\overrightarrow a + 2\overrightarrow b } \right|\).
a) \(\overrightarrow {MN} = 3\overrightarrow a \)có độ dài bằng 3 lần vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \)
Suy ra, từ điểm M vẽ vectơ MN với độ dài là 6 ô vuông và có hướng từ trái sang phải
\(\overrightarrow {MP} = - 3\overrightarrow b \)có độ dài bằng 3 lần vectơ \( - \overrightarrow b \), ngược hướng với vectơ \(\overrightarrow b \)
Suy ra, từ điểm M vẽ vectơ MP với độ dài là 3 đường chéo ô vuông và có hướng từ trên xuống dưới chếch sang trái
b) Hình vuông với cạnh bằng 1 thì ta tính được đường chéo có độ dài là \(\sqrt 2 \); \(\left| {\overrightarrow b } \right| = \sqrt 2 \) . Suy ra:
\(\left| {3\overrightarrow b } \right| = 3\left| {\overrightarrow b } \right| = 3\sqrt 2 \); \(\left| { - 3\overrightarrow b } \right| = 3\left| {\overrightarrow { - b} } \right| = 3\sqrt 2 \); \(\left| {2\overrightarrow a + 2\overrightarrow b } \right| = \left| {2\left( {\overrightarrow a + \overrightarrow b } \right)} \right| = 2\left| {\overrightarrow a + \overrightarrow b } \right|\)
Từ điểm cuối của vectơ \(\overrightarrow a \) vẽ một vectơ bằng vectơ \(\overrightarrow b \) ta có \(\overrightarrow c = \overrightarrow a + \overrightarrow b \)
Áp dụng định lý cosin ta tính được độ dài của vectơ \(\overrightarrow c \)là \(\left| {\overrightarrow c } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\widehat {\overrightarrow a ,\overrightarrow b }} \right)} = \sqrt {{2^2} + {{\sqrt 2 }^2} - 2.2.\sqrt 2 .\cos \left( {135^\circ } \right)} = \sqrt {10} \)
\( \Rightarrow \left| {2\overrightarrow a + 2\overrightarrow b } \right| = 2\left| {\overrightarrow a + \overrightarrow b } \right| = 2\left| {\overrightarrow c } \right| = 2\sqrt {10} \)
Cho vectơ a = (2; -2), vectơ b = (1; 4). Hãy phân tích vectơ c (5; 0) theo hai vectơ a và b.
Cho hai vectơ a → , b → tạo với nhau một góc 120o. Biết độ dài của hai vectơ đó lần lượt là 4 và 3. Độ dài của vectơ tổng a → + b → là:
A. 7
B. 1
C. 13
D. 37
Cho hai vectơ a → , b → tạo với nhau một góc 60o. Biết độ dài của hai vectơ đó lần lượt là 5 và 10. Độ dài của vectơ hiệu a → - b → là:
A. 15
B. 5
C. 75
D. 75
Cho hai vectơ a → và b → thỏa mãn a → = 3, b → = 2 và a → . b → = − 3. Xác định góc α giữa hai vectơ a → và b →
A. α = 30 0 .
B. α = 45 0 .
C. α = 60 0 .
D. α = 120 0 .
a → . b → = a → . b → . c o s a → , b → ⇒ c o s a → , b → = a → . b → a → . b → = − 3 3.2 = − 1 2 ⇒ a → , b → = 120 0 .
Đáp án D
Cho hai vectơ a → và b → thỏa mãn a → = 3, b → = 2 và a → . b → = − 3. Xác định góc α giữa hai vectơ a → và b →
A. α = 30 0 .
B. α = 45 0 .
C. α = 60 0 .
D. α = 120 0 .
Ta có a → . b → = a → . b → . c o s a → , b → .
⇒ c o s a → , b → = a → . b → a → . b → = − 3 3.2 = − 1 2 ⇒ a → , b → = 120 0
Chọn D.
Cho hai vectơ a → ; b → thỏa mãn a → = 3 , b → = 2 và a → b → = - 3 . Xác định góc giữa hai vectơ đó
A. 300
B. 600
C. 1350
D. 1200