Tính thể tích V của khối lập phương ABCD.A' B' C' D' , biết AC'=a 3
A. V= 3 3 a 3
B. V= 27 a 3
C. V= a 3
D. V= 3 a 3
Tính thể tích V của khối lập phương ABCD.A’B’C’D’ biết AC' = a 3
A . V = a 3
B . V = a 3 4
C . V = 3 6 a 3 4
D . V = 3 3 a 3
Đáp án A
Giả sử cạnh của hình lập phương là a. Khi đó AB' = x 2 . Xét tam giác vuông AB’C’ vuông tại B’ ta có .
Do đó
Tính thể tích V của khối lập phương ABCD.A'B'C'D' biết đường chéo AC'=a 3 .
A. a 3 3
B. 3 3 a 3
C. 3 6 a 3 4
D. a 3
Chọn D.
Gọi cạnh hình lập phương là x. Ta có
1/ cho hình lập phương abcd.a'b'c'd' cạnh a tâm o. khi đó thể tích khối tứ diện aa'b'o
2/ tổng diện tích các mặt của khối lập phương bằng 486. Thể tích v của khối lập phương đó là ???
giúp mình với !!! cám ơn <3
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a , điểm M là trung điểm cạnh BC và I là tâm hình vuông CDD'C' . Mặt phẳng (AMI ) chia khối lập phương thành hai khối đa diện, trong đó khối đa diện không chứa điểm D có thể tích là V . Khi đó giá trị của V là
A. \(\frac{7}{36}\)a3 B. \(\frac{22}{29}\)a3 C. \(\frac{7}{29}\)a3 D. \(\frac{29}{36}\)a3
Trong mặt phẳng (ABCD), kéo dài AM cắt DC tại E \(\Rightarrow\) C là trung điểm DE (t/c đường trung bình)
Trong mặt phẳng CDD'C' nối EI kéo dài lần lượt cắt CC' và DD' tại P và Q
Mặt phẳng (AMI) cắt lập phương theo thiết diện là tứ giác AMPQ
Gọi N là trung điểm CD \(\Rightarrow\left\{{}\begin{matrix}IN//DD'\\CN=\frac{1}{2}CD\end{matrix}\right.\) \(\Rightarrow\frac{EN}{ED}=\frac{\frac{3a}{2}}{2a}=\frac{3}{4}\)
Talet: \(\frac{EN}{ED}=\frac{IN}{DQ}=\frac{3}{4}\Rightarrow DQ=\frac{4}{3}IN=\frac{4}{3}.\frac{a}{2}=\frac{2a}{3}\)
\(CP=\frac{1}{2}DQ=\frac{a}{3}\) (đường trung bình)
\(V_{MCP.ADQ}=V_{E.ADQ}-V_{E.MCP}=\frac{1}{6}\left(ED.AD.DQ-EC.MC.CP\right)\)
\(=\frac{1}{6}\left(2a.a.\frac{2a}{3}-a.\frac{a}{2}.\frac{a}{3}\right)=\frac{7a^3}{36}\)
\(\Rightarrow V=V_{ABCD.A'B'C'D'}-\frac{7a^3}{26}=a^3-\frac{7a^3}{36}=\frac{29a^3}{36}\)
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có A B = a , A A ' = 2 a . Biết thể tích hình cầu ngoại tiếp tứ diện ABCD′ là 9 π 2 a 3 . Tính thể tích V của hình chữ nhật ABCD.A′B′C′D′.
A. 4 a 3
B. 4 a 3 3
C. 2 a 3
D. 2 a 3 3
Cho lăng trụ ABCD.A'B'C'D' có ABCD là hình chữ nhật A'A=A'B=A'D. Tính thể tích khối lăng trụ ABCD.A'B'C'D' biết AB= a , AD= a\(\sqrt{ }\)3, AA'=2a
A.3a3 B.a3 C.a3\(\sqrt{ }\) 3 D.3a3\(\sqrt{ }\)3
Giúp mk với mình cần gấp ạ
Gọi H là hình chiếu vuông góc của A' lên (ABCD)
Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD
\(\Rightarrow H\) là trung điểm BD
\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)
\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)
\(\Rightarrow V=A'H.AB.AD=3a^3\)
Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy là hình vuông cạnh bằng 4cm, đường chéo AB′ của mặt bên (ABB′A′) có độ dài bằng 5cm. Tính thể tích V của khối lăng trụ ABCD.A′B′C′D′.
A. 48 cm 3
B. 24 cm 3
C. 16 cm 3
D. 32 cm 3
Cho hình lập phương ABCD.A' B' C' D' có A'C = 3 a 3 . Thể tích của khối lập phương ABCD.A' B' C' D' là
A. 9 a 3 3
B. 27 a 3
C. 3 a 3
D. a 3
Một khối lập phương có cạnh a=20cm a, Tính V của khối lập phương đó b, Khối lập phương làm bằng sắt . Tính khối lượng của khối lập phương biết D sắt là 7800kg/m^3
c, Bây h người ta khoét một lỗ trên khối lập phương có V là 4dm^3, rồi lấp đầy vào đó một chất cs khối lượng riêng là 2000kg/m^3. Tìm khối lượng riêng của khối lập phương lúc này
a,V=a3=8000cm3=0,008m3
b, m=7800.0,008=62,4kg
c, 4dm3=0,004m3
m'=0,004.2000+(0,008-0,004)7800=39,2kg
D=\(\frac{39,2}{0,008}\)=4900(kg/m3)