Chọn D.
Gọi cạnh hình lập phương là x. Ta có
Chọn D.
Gọi cạnh hình lập phương là x. Ta có
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Khi đó thể tích hình chóp A.A'BCD' bằng:
A. a 3 /2 B. a 3 /3
C. a 3 /4 D. a 3 /6
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình cầu nội tiếp hình lập phương đó. Khi đó:
V H V ABCD . A ' B ' C ' D '
A. π /6 B. π /4
C. π /3 D. π /( 3 )
Cho hình lập phương ABCD.A'B'C'D' có đường chéo bằng a 3 . Tính thể tích khối chóp A'.ABCD.
A. a 3 3
B. C
C. a 3
D. 2 2 a 3
Bài 1. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4. a. Tính độ dài đường chéo của hình lập phương. b. Tính góc giữa AC' và mặt đáy c. Tính góc giữa AC và B'C' d. Tính khoảng cách từ A đến (A'BD)
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình trụ tròn xoay ngoại tiếp hình lập phương đó. Khi đó: V H V ABCD . A ' B ' C ' D '
A. 3/2 B. π /2
C. π /3 D. π /( 3 )
Thể tích của khối lập phương ABCD.A'B'C'D' có đường chéo AC'= 6 bằng
A. 3 3
B. 2 3
C. 2
D. 2 2
Cho hình chóp tam giác đều S.ABCD, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60. Tính thể tích V của hình chóp S.ABCD. A)a³✓3/2 B)a³✓3/6 C)a³✓3/12 D)a³✓3/24
Cho hình hộp đứng ABCD.A'B'C'D' có AB = a, AD = 2a, BD = a 3 . Góc tạo bởi AB' và mặt phẳng (ABCD) bằng 60 0 Tính thể tích của khối chóp D'.ABCD.
A. 3 a 3 3
B. 3 a 3
C. a 3
D. 2 3 a 3 3