Giải các phương trình sau: ( x + 2 ) 2 = 9 ( x 2 – 4 x + 4 )
Giải các phương trình sau lớp 8
a)2x^2+6x+9=x^2
b) (x-3) (x+4) -2(3x-2)= (x-4)^2
a: \(\Leftrightarrow x^2+6x+9=0\)
\(\Leftrightarrow\left(x+3\right)^2=0\)
=>x+3=0
hay x=-3
b: \(\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16\)
=>-7x+8=-8x+16
=>x=8
3.15 giải các phương trình sau :
a) ( x - 6 ) ( 2x - 5 ) ( 3x + 9 ) = 0
b) 2x( x - 3 ) + 5( x - 3 ) = 0
c) ( x^2 - 4 ) - ( x - 2 ) ( 3 - 2x ) =0
3.16 tìm m để phương trình sau có nghiệm :
x=-7 ( 2m - 5 )x - 2m^2 + 8
3.17 giải các phương trình sau :
a) ( 2x - 1 )^2 - ( 2x + 1 ) = 0
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
Giải các phương trình sau:
4(2x + 7)2 - 9(x + 3)2 = 0
(x + 1)(x + 2)(x + 3)(x + 4)(x + 5) = 10
a: \(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
=>(4x+14+3x+9)(4x+14-3x-9)=0
=>(7x+23)(x+5)=0
=>x=-23/7 hoặc x=-5
\(a,\\ \Leftrightarrow7x^2+58x+115=0\\ \Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+5=0\\7x+23=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
\(b,\\ \Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=0\\ \LeftrightarrowĐặt.x^2+6x+5=a\\ \Leftrightarrow a=a\left(a+3\right)=10\\ \Leftrightarrow a^2+3a-10=0\\ \Leftrightarrow\left(a+5\right)\left(a-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-5\\a=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+6x+5=-5\\x^2+6x+5=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+6x+10=0\\x^2+6x+3=0\end{matrix}\right.\\ \left(Vô.n_o\Delta=36-40=-4< 0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)
Giải các phương trình sau:
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Lời giải:
a. Đề thiếu
b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$
$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$
$\Leftrightarrow 2x-3=3$
$\Leftrightarrow x=3$ (tm)
Nếu $1\leq x< 2$ thì:
$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)
Nếu $x< 1$ thì:
$1-x+2-x=3$
$\Leftrightarrow x=0$ (tm)
Bài I : Giải các phương trình sau
1) 3x – 2( x – 3 ) = 6 2)
3) ( x – 1 )2 = 9 ( x + 1 )2 4)
1) \(3x-2x+6=6\Leftrightarrow x=0\)
2) \(4\left(2x-1\right)-12x-12=3\left(x+2\right)\)
\(\Leftrightarrow8x-4-12x-12-3x-6=0\)
\(\Leftrightarrow7x=-22\Leftrightarrow x=\dfrac{-22}{7}\)
3, \(\left(x-1\right)2=9\left(x+1\right)2\)
\(\Leftrightarrow2x-2\) \(=18x+18\)
\(\Leftrightarrow2x-18x=18+2\)
\(\Leftrightarrow-16x\) \(=20\)
\(\Leftrightarrow x\) \(=\dfrac{-5}{4}\)
Vậy pt đã cho có tập nghiệm là S= \(\left\{\dfrac{-5}{4}\right\}\)
4, \(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\) ( ĐKXĐ : \(x\ne\pm1\) )
\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^2-3x-4+x^2+3x-4=2x^2-2\)
\(\Leftrightarrow2x^2-8-2x^2+2=0\)
\(\Leftrightarrow0\) \(=6\) ( Vô lí )
Vậy pt đã cho vô nghiệm
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Giải các phương trình sau
a)(x-1)^2-(x+1)^2=2(x-3)
b)x^2-9=(x-3)(5x+2)
c)(2x+3)^2-3(x-4)(x+4)=(x-2)^2
d)x^2+4x^2-9x-36=0
a: \(\Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\)
=>2x-6=-4x
=>6x=6
hay x=1
b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)
=>(x-3)(-4x+1)=0
=>x=3 hoặc x=1/4
c: \(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)-x^2+4x-4=0\)
\(\Leftrightarrow3x^2+16x+5-3x^2+48=0\)
=>16x+53=0
hay x=-53/16
d: \(\Leftrightarrow x^3+4x^2-9x-36=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-9\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
b)x^2-9=(x-3)(5x+2)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(1-4x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\1-4x=0\end{matrix}\right.\left\{{}\begin{matrix}x=0+3\\x=1:4\end{matrix}\right.\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(a,\left(x-1\right)^2-\left(x+1\right)^2=2\left(x-3\right)\\ \Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\\ \Leftrightarrow-4x-2x=-6\\ \Leftrightarrow-6x=-6\\ \Leftrightarrow x=1\)
\(b,x^2-9=\left(x-3\right)\left(5x+2\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(c,\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2\\ \Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4\\ \Leftrightarrow4x^2+12x+9-3x^2+48-x^2+4x-4=0\\ \Leftrightarrow16x+53=0\\ \Leftrightarrow x=\dfrac{-53}{16}\)
\(d,x^3+4x^2-9x-36=0\\ \Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\\ \Leftrightarrow\left(x^2-9\right)\left(x+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=-4\end{matrix}\right.\)
Giải các phương trình sau: a) 5x+9 = 2x b) (x+1).(4x-3)= (2x+5)(x+1) c) x/x-2 +x/x+2 = 4x/ x²-4 d) 11x-9= 5x+3 e) (2x+3)(3x-4) =0
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
c)
<=>
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=>
Vậy pt trên có tập nghiệm là S={}
Giải các phương trình sau: a) 4 3x 25 4x b) 2 x 1 x 1 x 3 0 c) 1 3 9 x 1 x 2 (x 1)(x 2)
\(a,4+3x=25-4x\\ \Leftrightarrow7x=21\\ \Leftrightarrow x=3\\ b,\left(x-1\right)^2+\left(x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c, ĐKXĐ:\(x\ne-1,x\ne2\)
\(\dfrac{1}{x+1}+\dfrac{3}{x-2}=\dfrac{9}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{9}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+3x+3-9}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow4x-8=0\\ \Leftrightarrow x=2\left(ktm\right)\)