Chứng minh rằng hai đa giác đều có cùng số cạnh luôn đồng dạng với nhau
Chứng minh rằng hai đa giác đều có cùng số cạnh luôn đồng dạng với nhau ?
Dùng phép tịnh tiến đưa về hai đa giác đều cùng tâm đối xứng, sau đó dùng phép quay đưa về hai đa giác đều cùng tâm đối xứng có các đỉnh tương ứng thẳng hàng với tâm, cuối cùng dùng phép vị tự biến đa giác này thành đa giác kia
Chứng minh rằng hai tam giác có từng cặp cạnh song song (hoặc vuông góc) với nhau thì 2 tam giác đó đồng dạng.
Mỗi cạnh, mỗi đường chéo của một lục giác ABCDEF được tô bởi một trong hai màu: xanh hoặc đỏ. Chứng minh rằng luôn tồn tại một tam giác với ba đỉnh là ba đỉnh của đa giác và có ba cạnh cùng một màu.
Cho hình đa giác đều chín cạnh. Mỗi đỉnh của nó được tô bằng một trong hai màu trắng hoặc đen. Chứng minh rằng tồn tại hai tam giác phân biệt có diện tích bằng nhau, mà các đỉnh của mỗi tam giác được tô cùng màu.
) Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
1) Chứng minh rằng: AE.AC = AF.AB
2) Chứng minh rằng tam giác AFE đồng dạng tam giác ACB
3) Chứng minh rằng tam giác FHE đồng dạng tam giác BHC
4) Chứng minh rằngBF.BA+CE.CA = BC2
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC
Cho hình thang (AB // CD) có AB = 10 cm, CD = 25 cm, hai đường chéo cắt nhau tại O. Chứng minh rằng tam giác AOB đồng dạng với tam giác COD và tìm tỉ số đồng dạng.
Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔAOB đồng dạng với ΔCOD
=>\(k=\dfrac{AB}{CD}=\dfrac{10}{25}=\dfrac{2}{5}\)
Chứng minh rằng, nếu hai tam giác ABC và A'B'C' đồng dạng với nhau thì :
a) Tỉ số của hai đường phân giác tương ứng bằng tỉ số đồng dạng
b) Tỉ số của hai trung tuyến tương ứng bằng tỉ số đồng dạng
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
Cho hai tam giác A'B'C' và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số hai chu vi tam giác cũng bằng k.
Vì △ A'B'C' đồng dạng △ ABC theo tỉ số k nên ta có:
Theo tính chất dãy tỉ số bằng nhau, ta có:
Suy ra:
Vậy
Cho hai tam giác A'B'C' và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số hai chu vi tam giác cũng bằng k.