tìm hai số dương x;y biết:x/4-y/7 và x.y=112
Đem nhân số dương x với 2, và tích số này sau đó chia cho 3. Biết số dương là căn bậc hai của kết quả hai phép tính trên bằng x, hãy tìm giá trị của x ?
- Vì khi đem nhân số dương x với 2, sau đó tích số này sau đó chia cho 3 và số dương đó là căn bậc hai của kết quả hai phép tính trên bằng x nên:
- Ta có: \(x=\sqrt{\frac{2x}{3}}\)( * )
\(\Rightarrow x^2=\frac{2x}{3}\)
\(\Leftrightarrow3x^2=2x\)
\(\Leftrightarrow3x^2-2x=0\)
\(\Leftrightarrow x.\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{2}{3}\end{cases}}\)
- Thử lại:
+ Với \(x=2\)thay vào phương trình ( * ), ta có:
\(\sqrt{\frac{2.2}{3}}=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\ne2\)
Vậy \(x=2\)loại
+ Với \(x=\frac{2}{3}\)thay vào phương trình ( * ), ta có:
\(\sqrt{\frac{2.\frac{2}{3}}{3}}=\sqrt{\frac{2}{3}.\frac{2}{3}}=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)thỏa mãn
Vậy \(S=\left\{\frac{2}{3}\right\}\)
tìm hai số x ,y .Biết x,y là hai số nguyên dương và (x:y)^2=16/9;x^2+y^2=100
Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)
\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)
Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được
\(\left(\frac{4y}{3}\right)^2+y^2=100\)
\(\frac{16}{9}.y^2+y^2=100\)
\(y^2.\left(\frac{16}{9}+1\right)=100\)
\(y^2.\frac{25}{9}=100\)
\(y^2=100:\frac{25}{9}=36\)
\(y=6\)( vì y dương )
tìm hai số x, y biết x, y là hai số nguyên dương và (x : y)^2 = 16/9; x^2 + y^2 = 100
Ta có :
\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)
\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)
Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }
tìm hai số nguyên dương x,y thỏa mãn (x+y)^4=40x+1
Câu 3 tìm hai số x ,y biết x , y là hai số nguyên dương ( x:y)^2 = 16/9. ; x^2+y^2 = 100
Cho tam thức bậc hai f(x) = x^2 - 20x + 11.
a) Tìm tất cả các số hữu tỉ x sao cho căn f(x) là một số hữu tỉ.
b) Tìm tất cả các số nguyên dương x sao cho căn f(x) là một số nguyên dương.
Ta có:
\(x+y\ge2\sqrt{xy}=2\sqrt{16}=8\)
Dấu bằng xảy ra khi: x=y=4
Vậy min của x+y là 8 tại x=y=4
Tìm hai số nguyên dương x, y biết: x/9 - 3/y = 1/18
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\frac{2x}{18}-\frac{1}{18}=\frac{3}{y}\)
\(\frac{2x-1}{18}=\frac{3}{y}\)
\(\left(2x-1\right)y=18.3=54\)
=> 2x - 1 ; y \(\in\)Ư(54) ={...}
Làm nốt e nhé, chăm chỉ lên !
cho x,y là hai số nguyên dương biết x +y =2021. tìm min P=xy
có x+y=2021=>y=2021-x
=>x.y=x(2021-x)=2021x-\(x^2\)
=>P=2021x-\(x^2\)
=> -P=\(x^2-2021x\)\(=x^2-2.\dfrac{2021}{2}.x+\left(\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)=\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)
lại có x,y nguyên dương=>x,y\(\ge\)1
có x+y=2021=>x,y\(\le\)2020
=>\(x\le2020\)
=>\(x-\dfrac{2021}{2}\le2020-\dfrac{2021}{2}\)
<=>\(\left(x-\dfrac{2021}{2}\right)^2\le\left(\dfrac{2019}{2}\right)^2\)
=>\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\le\)\(\left(\dfrac{2019}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2=-2020\)
<=>\(-P\le-2020< =>P\ge2020\)
dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2020\\x=1\end{matrix}\right.\)
vậy MIN P=2020 khi x=2020 hoặc x=1
bổ sung đoạn cuối dấu với x=2020 thì y=1
với x=1 thì y =2020
ae giúp tôi bài này với
Bài 4. (0,5 điểm). Tìm hai số x, y. Biết x, y là hai số nguyên dương và
(x/y)^2 ; x^2 +y^2 =100
\(\left(\dfrac{x}{y}\right)^2:x^2+y^2=100\)
\(\dfrac{x^2}{y^2}:x^2+y^2=100\)
\(\dfrac{x^2}{x^2.y^2}+y^2=100\)
\(y^2+y^2=100\)
\(2y^2=100\)
\(y^2=50\)
⇒ \(\left[{}\begin{matrix}y=\sqrt{50}\\y=-\sqrt{50}\end{matrix}\right.\)
Còn lại bạn thay từng tường hợp vào tìm x là được