Nêu định nghĩa số phức liên hợp với số phức z. Số phức nào bằng số phức liên hợp của nó?
Nêu định nghĩa số phức liên hợp của số phức \(z\). Số phức nào bằng số phức liên hợp của nó ?
*Cho số phức z = a + bi.
Ta gọi số phức a – bi là số phức liên hợp của z và kí hiệu là .
Vậy ta có z = a + bi thì ¯zz¯ = a – bi
*Số phức z bằng số phức liên hợp của nó ⇔ a = a và b = -b
⇔ a ∈ R và b = 0 ⇔ z là một số thực.
Nhắc lại định nghĩa số phức, số phức liên hợp, mô đun của số phức. Biểu diễn hình học của số phức.
1. Số phức
Mỗi biểu thức dạng a + bi, trong đó: a, b ∈ R;i2= -1 được gọi là số phức. Trong đó a được gọi là phần thực, b gọi là phần ảo, số i là đơn vị ảo.
2. Mô đun
Cho số phức z = a + bi, được biểu diễn bởi điểm M(a;b) trên tọa độ Oxy. Ta gọi mô đun của số phức z, kí hiệu là |z| là đọ dài của vectơ OM.
3. Số phức liên hợp
Cho số phức z = a + bi, ta gọi a – bi là số phức liên hợp của z
Nhắc lại các định nghĩa số phức, số phức liên hợp, môđun của số phức. Biểu diễn hình học của số phức ?
Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M và M’. Số phức z 4 + 3 i và số phức liên hợp của nó có điểm biểu diễn là N, N’. Biết rằng M, M’, N , N’ là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của z + 4 i − 5 .
A. 5 34 .
B. 2 5 .
C. 1 2 .
D. 4 13 .
Đáp án C.
Giả sử z = a + b i
với a , b ∈ ℝ ⇒ M a , b , M ' a , − b .
Ta có:
z 4 + 3 i = a + b i 4 + 3 i = 4 a − 3 b + i 4 b + 3 a ⇒ N 4 a − 3 b ; 4 b + 3 a , N ' 4 a − 3 b ; − 4 b − 3 a
Để M, M’, N, N’ là 4 đỉnh của hình chữ nhật thì M phải có cùng tọa độ với N và N’
⇔ b = ± 4 b + 3 a ⇔ b = − a b = − 3 a 5 ⇒ M nằm trên đường thẳng Δ 1 : x + y = 0 hoặc Δ 2 : 3 x + 5 y = 0
Xét điểm I 5 ; − 4 ⇒ z + 5 i − 5 = M I = M i n d I , Δ 1 , d I , Δ 1 = 1 2 .
Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M và M’. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn là N, N’. Biết rằng M, M’, N , N’ là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của |z+4i-5|
A . 5 34
B . 2 5
C . 1 2
D . 4 13
Đáp án C.
Giả sử
Ta có:
Để M, M’, N, N’ là 4 đỉnh của hình chữ nhật thì M phải có cùng tọa độ với N và N’
=> M nằm trên đường thẳng hoặc
Xét điểm
Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M, M'. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N'. Biết rằng M, M', N, N' là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của z + 4 i - 5 .
Cho số phức z và số phức liên hợp của nó z ¯ có điểm biểu diễn là M, M’. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N’. Biết rằng 4 điểm M, N, M’, N’ tạo thành hình chữ nhật. Tìm giá trị nhỏ nhất của biểu thức |z + 4i -5|
A . 1 2
B . 2 5
C . 5 34
D . 4 13
Đáp án A
Giả sử
Ta có M(a;b) và M'(a;-b)
Khi đó
Suy ra và
Do 4 điểm M, N, M’, N’ tạo thành hình thang cân nhận Ox làm trục đối xứng nên 4 điểm đó lập thành hình chữ nhật
Với a = -b, ta có
Dấu bằng xảy ra khi
Với ta có
Vậy
Cho số phức z và số phức liên hợp của nó z có điểm biểu diễn là M, M’. Số phức z . ( 4 + 3 i ) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N’. Biết rằng 4 điểm M, N, M’, N’ tạo thành hình chữ nhật. Tìm giá trị nhỏ nhất của biểu thức | z + 4 i - 5 | .
A. 1 2
B. 2 5
C. 5 34
D. 4 13
Biết rằng nghịch đảo của số phức z z ≠ ± 1 bằng số phức liên hợp của nó. Mệnh đề nào dưới đây đúng?
A. z ∈ ℝ
B. z là một số thuần ảo
C. z = − 1
D. z = 1
Đáp án D.
Đặt z = a + b i a ; b ∈ ℝ
Theo đề bài ta có
1 z = z ¯ ⇔ 1 a + b i = a − b i ⇔ a + b i a − b i = 1 ⇔ a 2 + b 2 = 1
⇒ z = 1