Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Bài 1: Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Bài 2: Cho tứ giác ABCD có góc A=70 độ , góc D=80 độ và góc ngoài ở đỉnh C=60 độ
a) Tính góc B của tứ giác ABCD
b) Chứng minh rằng tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối của tứ giác đó.
Bài 3: Tứ giác ABCD có góc C + góc D= 90 độ. Chứng minh rằng AC2+ BD2= AB2+ CD2
Mình đang rất cần các bài này. Các bạn giúp mình nhé. cảm ơn các bạn
Bài 1:
Gọi E là giao điểm của hai đường chéo AC và BD
Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC
(AE + CE) + (BE + DE) > AB + DC
AC + BD > AB + DC
Tương tự ta có AC + BD > AD + BC
Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.
Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)
Theo chứng minh trên ta có:
\(\dfrac{AB+BC+CD+DA}{2}\)< \(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)
Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:
AB + AD > BD
AB + BC > AC
BC + CD > BD
CD + AD > AC
Cộng vế với vế ta có:
(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2
⇒AB + BC + CD + DA > BD + AC (2)
Kết hợp (1) và (2) ta có:
Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác
Bài : 2 Góc C = 1800 - 600 = 1200
Tổng bốn góc của tứ giác là 3600
Ta có: Góc B của tứ giác ABCD là:
3600 - (700 + 800 + 1200) = 900
Câu b chứng minh như bài 1
Bài 1:
a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Bài 3:
Gọi O là giao điểm AD và BC.
Ta có nên
Áp dụng định lí Py – ta – go,
Ta có
Nên
Bài 1: Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Bài 2: Cho tứ giác ABCD có góc A=70 độ , góc D=80 độ và góc ngoài ở đỉnh C=60 độ
a) Tính góc B của tứ giác ABCD
b) Chứng minh rằng tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối của tứ giác đó.
Bài 3: Tứ giác ABCD có góc C + góc D= 90 độ. Chứng minh rằng AC2+ BD2= AB2+ CD2
Mình đang rất cần các bài này. Các bạn giúp mình nhé. cảm ơn các bạn
Cho tứ giác ABCD.
a) Chứng minh rằng: mỗi đường chéo nhỏ hơn nửa chu vi
b) Chứng minh rằng tổng hai cạnh đối nhỏ hơn tổng hai đường chéo
Lê Cảnh Bảo Long bn tham khảo nha:
a, Chứng minh rằng trong một tứ giác, mỗi đường chéo lớn hơn nửa chu vi tứ giác đó .
Phải là: mỗi đường chéo nhỏ hơn nửa chu vi tứ giác đó
cho tứ giác ABCD ta có AC< AB + BC (1) ( trong tam giác tổng 2 cạnh lớn hơn cạnh thứ 3)
và AC<AD+DC (2) (như trên) , cộng hai bất đẳng thức cùng chiều (1) và (2)
=>2AC < AB + BC + AD + DC = 2p => AC<p chứng minh tương tự ta cũng có BD < p
b, Chứng minh rằng trong một tứ giác, tổng hai đường chéo
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
cho tứ giác ABCD có 2 đường chéo AC và BD cắt nhau tại O.Chứng minh tổng hai đường chéo AC và BD lớn hơn tổng hai cạnh đối của tứ giác
Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC, OCD và ODA.
Chứng minh trong mooth tứ giác thì
a, Tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài hai đường chéo
b, Tổng độ dài hai đường chéo lớn hơn nửa chu vi tứ giác
Giúp mình 1 bài này thôi nha :3 (ko spam, sao chép nhá) Chứng minh rằng trong một tứ giác thì: a) Tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài hai đường chéo. b) Tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác.
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
1) chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn tổng hai cạnh đối
2)chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
các bạn giúp mình bài này với
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của hai đường chéo AC và BD
* Trong ∆ OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
chứng minh rằng trong một tứ giác
a) một đường chéo nhỏ hơn nửa chu vi của tứ giác
b) tổng hai đường chéo lớn hơn tổng hai cành đối