Giải các phương trình : - 2 x 2 +6x = 0
cho hai phương trình \(x^2-6x+9=0\) và \(x^3-6x^2+11x-6=0\). giải các phương trình đã cho biết rằng chúng có một nghiệm chung
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)
Giải các bất phương trình bậc hai sau:
a) \(3{x^2} - 2x + 4 \le 0\)
b) \( - {x^2} + 6x - 9 \ge 0\)
a) Ta có \(a = 3 > 0\) và tam thức bậc hai \(f\left( x \right) = 3{x^2} - 2x + 4\) có \(\Delta ' = {1^2} - 3.4 = - 11 < 0\)
=> \(f\left( x \right) = 3{x^2} - 2x + 4\) vô nghiệm.
=> \(3{x^2} - 2x + 4 > 0\forall x \in \mathbb{R}\)
b) Ta có: \(a = - 1 < 0\) và \(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)
=> \(f\left( x \right) = - {x^2} + 6x - 9\) có nghiệm duy nhất \(x = 3\).
=> \( - {x^2} + 6x - 9 < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)
Giải các phương trình sau
1. x^4+3x^3-2x^2-6x+4=0
2. x^4-3x^3-6x^2+3x+1=0
x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0
⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0
⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0
⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0
⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0
⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3
tl
x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0
⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0
⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0
⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0
⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0
⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3
^HT^
Ta thấy x=0 không là nghiệm của phương trình
chia cả 2 vế cho x^2 ta được:
PT <=> x^2-3x-6+3/x+1/(x^2)=0
<=> (x^2-2+1/(x^2))-3(x-1/x)-4=0
<=> (x-1/x)^2-3(x-1/x)-4=0
Đặt x-1/x=y
PT <=> y^2-3y-4=0
<=> y=-4 hoặc y=1
Tại y=-4 , ta có x+1/x+4=0
<=> x^2+4x+1=0
<=> x=-2+ √3 hoăc x=-2- √ 3
Tại y=1 ta có x^2-x-1=0
<=> x=(1- √ 5)/2 hoặc x=(1+ √5)/2
Bài 1: Giải phương trình:
x4-6x3-x2+54x-72=0 (biết rằng phương trình có một nghiệm là x=2)
Bài 2: Giải các phương trình:
a) x4-5x2+4=0
b) x4-2x3-6x2+8x+8=0
c) 2x4-13x3+20x2-3x-2=0
GIẢI NHANH GIÚP MÌNH VỚI Ạ....THANKS MỌI NGƯỜI❤
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(2x^3-9x^2+2x+1\)
\(=2x^3-x^2-8x^2+4x-2x+1\)
\(=x^2\left(2x-1\right)-4x\left(2x-1\right)-\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-4x-1\right)\)
\(=\left(2x-1\right)\left(x^2-4x+4-5\right)\)
\(=\left(2x-1\right)\left[\left(x-2\right)^2-5\right]\)
.......
GIẢI CÁC PHƯƠNG TRÌNH SAU:
2x3+6x2+6x+1=0
X^3-3X^2+3X-3=0
2X^3+6X^2+6X+1=0
3X^3+18X^2+36X+23=0
Giải phương trình:[21/(x^2-6x)]-x^2+6x+4=0
Đặt \(x^2-6x=t\)
Ta có: \(\frac{21}{t}-t+4=0\Leftrightarrow t^2-4t-21=0\\ \Rightarrow\left(t-7\right)\left(t+3\right)=0\\ \Leftrightarrow\orbr{\begin{cases}t=7\\t=-3\end{cases}}\)
\(t=7\Rightarrow x^2-6x-7=0\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
\(t=3\Rightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3-\sqrt{12}\\x=3+\sqrt{12}\end{cases}}\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Giải các phương trình sau:
a) x²+4x+3=0
b)x²+3x-2=0
c)-3x²+5x+8=0
d)9x²-6x+1=0
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
a: =>(x+1)(x+3)=0
=>x=-1 hoặc x=-3
b: Δ=3^2-4*1*(-2)=9+8=17>0
=>Phương trình có hai nghiệm pb là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
c: =>3x^2-5x-8=0
=>3x^2-8x+3x-8=0
=>(3x-8)(x+1)=0
=>x=8/3 hoặc x=-1
d: =>(3x-1)^2=0
=>3x-1=0
=>x=1/3
Giải các phương trình sau
x^4 – 3x^2 + 6x + 13 = 0
x4-3x2+6x+13=0
<=> x4-4x2+4+x2+6x+9=0
ta co : x2 - 2 khác x-3
=> phương trình vô nghiệm
Tk mk nha ! m.n.
Giải các phương trình sau:
a \(x^4=5x^2+2x-3\)
b \(x^4=6x^2+12x+10\)
c \(3x^3+3x^2+3x=-1\)
d \(8x^3-12x^2+6x-5=0\)