Tìm a để các hàm số f ( x ) 3 x + 1 - 2 x 2 - 1 K h i x > 1 a ( x 2 - 2 ) x - 3 K h i x ≤ 1 liên tục tại x = 1
A. 1/2
B. 1/4
C. 3/4
D. 1
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))
Cho hàm số y= F(x) = x×(x-2) và hàm số y= G(x) = -x+6
a) tính F(3); [ F(2/3) ]² ; G(-1/2)
b) tìm x để F(x)=0
c) tìm a để F(a)=G(a)
a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)
\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)
\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)
\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)
b: F(x)=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c: F(a)=G(a)
=>\(a\left(a-2\right)=-a+6\)
=>\(a^2-2a+a-6=0\)
=>\(a^2-a-6=0\)
=>(a-3)(a+2)=0
=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)
Cho hàm số y=f(x)=1/2|x|-3
a)Tính f(0); f(-1) ;f(2)
b)Tìm x để f(x)=0
c)Tìm x để f(x)=-2
d)Tìm x để hàm số có giá trị nhỏ nhất
Cho hàm số y=f(x)=1/2|x|-3
a)Tính f(0); f(-1) ;f(2)
b)Tìm x để f(x)=0
c)Tìm x để f(x)=-2
d)Tìm x để hàm số có giá trị nhỏ nhất
Cho hàm số y=f(x)=1/2|x|-3
a)Tính f(0); f(-1) ;f(2)
b)Tìm x để f(x)=0
c)Tìm x để f(x)=-2
d)Tìm x để hàm số có giá trị nhỏ nhất
1) Cho hàm số y = f(x) = 2x - 3.
a) Tính f(2); f(0); f(-3); f()
b) Tìm giá trị của x để f(x) = 5
c) Trong hai điểm M(0; -3); N(3; 1), điểm nào thuộc đồ thị hàm số trên?
2)
a) Vẽ hệ trục tọa độ Oxy và đánh dấu các điểm A(2; -2); B(-3;1/2); C(0; 2); D(-3; 0)
3) Vẽ đồ thị của hàm số y = 2x và y = - 1/2x trên cùng một hệ trục tọa độ.
cho hàm số y=f(x)=4x+a-√3 (2x+1)
a, chứng tỏ rằng hàm số là hàm số bậc nhất đồng biến
b, tìm x để f(x)=0
a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)
\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)
\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)
Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)
nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R
b: f(x)=0
=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)
=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)
=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)
cho hàm số y= f(x)=(m-3)x + m-2 a)tìm m để hàm số trên là hàm số đồng biến b) tìm m biết f(-1)=1
a: Để hàm số đồng biến thì m-3>0
hay m>3
b: Thay x=-1 và y=1 vào (d), ta được:
-m+3+m-2=1
hay 1=1(đúng)
Cho hàm số f ( x ) = x 3 + 3 x 2 - m . Tìm các giá trị của m để đồ thị hàm số f(x) cắt trục hoành tại 3 điểm phân biệt
A. m ≤ 0 m ≥ 4
B. m ∈ 0 ; 4
C. m < 0 m > 4
D. m ∈ 0 ; 4