Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MinhDrake
Xem chi tiết
Akai Haruma
9 tháng 8 2021 lúc 21:12

Lời giải:

$A=p^4+2019q^4=p^4-q^4+2020q^4$

$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $(p,5)=(q,5)=1$

$\Rightarrow p^2,q^2\equiv 1,4\pmod 5$

Nếu $p^2\equiv q^2\pmod 5$ thì $p^2-q^2\equiv 0\pmod 5$

$\Rightarrow A=(p^2-q^2)+2020q^4\equiv 0 \pmod 5(1)$

Nếu $p^2,q^2$ không cùng số dư khi chia cho $5$ thì:

$p^2+q^2\equiv 1+4\equiv 0\pmod 5$

$\Rightarrow A\equiv 0\pmod 5(2)$

Từ $(1);(2)\Rightarrow A\vdots 5(*)$

Mặt khác:

Vì $p,q>5$ nên $p,q$ lẻ

$\Rightarrow p^2\equiv q^2\equiv 1\pmod 4$

$\Rightarrow p^2-q^2\equiv 0\pmod 4$

$\Rightarrow A=(p^2-q^2)(p^2+q^2)+2020q^4\equiv 0\pmod 4$

$\Rightarrow A\vdots 4(**)$

Từ $(*); (**)\Rightarrow A\vdots (4.5=20)$

 

Hà Phương Thảo
22 tháng 3 2022 lúc 20:58

Akai Haruma!(mod 5) và (mod 4) là j vậy 

Khách vãng lai đã xóa
Khoa Tiến Đăng Nguyễn
Xem chi tiết
ILoveMath
26 tháng 10 2021 lúc 21:15

\(\Leftrightarrow M=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(\Leftrightarrow M=30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)

\(\Leftrightarrow M=30+2^4.30+...+2^{16}.30\)

\(\Leftrightarrow M=30\left(1+2^4+...+2^{16}\right)⋮5\)

Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 21:15

\(M=\left(2+2^2+2^3+2^4\right)+...+2^{17}\left(2+2^2+2^3+2^4\right)\)

\(=30\cdot\left(1+...+2^{17}\right)⋮5\)

Phạm Thế Bảo Minh
26 tháng 10 2021 lúc 21:36

⇔M=(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220)

 

⇔M=30+24(2+22+23+24)+...+216(2+22+23+24)

 

⇔M=30+24.30+...+216.30

 

⇔M=30(1+24+...+216)⋮5

Mai Phương Uyên
Xem chi tiết
Phạm Đăng Cường
Xem chi tiết
emmoon
12 tháng 12 2023 lúc 22:57

co cai nit tu di ma tinh

 

phương hoa đoàn
Xem chi tiết
ミŇɦư Ἧσς ηgu lý ミ
30 tháng 10 2020 lúc 21:02

Vì n là số tự nhiên nên n có dạng:

n=2k hoặc n= 2k+1 ( k ∈N∈N)

Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)

= 2(2k+3)(k+6)⋮⋮2

⇒⇒(n+3)(n+12) ⋮2⋮2

Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)

= (2k+4)(2k+13)

= 2(k+2)(2k+13)⋮2⋮2

⇒⇒ (n+3)(n+12)⋮2⋮2

Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n

Khách vãng lai đã xóa
Nẹji
Xem chi tiết
Như Bảo
Xem chi tiết
Akai Haruma
8 tháng 7 2018 lúc 11:18

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

Akai Haruma
8 tháng 7 2018 lúc 11:23

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

Akai Haruma
8 tháng 7 2018 lúc 11:29

Bài 3:

a,b) \(Q=3+3^2+3^3+...+3^{12}\)

\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)

\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)

Do đó \(Q\vdots 10; Q\vdots 4\)

c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)

\(=13(3+3^4+...+3^{10})\vdots 13\)

Ta có đpcm.

b)

GIẢI GIÙM MÌNH VỚI :D
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 11 2021 lúc 9:54

\(M=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

\(M=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)=\)

\(=3\left(2+2^3+2^5+...2^{19}\right)⋮3\)

\(M=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{17}+2^{19}\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)

\(M=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{17}\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)

\(M=2.5+2^5.5+...+2^{17}.5+...+2^{18}.5⋮5\)

Khách vãng lai đã xóa
cẩm ngọc
Xem chi tiết
emmoon
12 tháng 12 2023 lúc 22:56

hoi bi kho

Dang Tung
13 tháng 12 2023 lúc 6:43

M = 2 + 2^2 + 2^3 + ... + 2^30

= (2 + 2^2) + (2^3 + 2^4) + ... + (2^29 + 2^30)

= 2(1+2) + 2^3(1+2) + ... + 2^29(1+2)

= 2.3 + 2^3 . 3 + ... + 2^29 . 3

= 3(2+2^3+...+2^29) chia hết cho 3

Nguyễn Hồng Ngọc
Xem chi tiết
Phạm Lê Thiên Triệu
24 tháng 10 2018 lúc 17:17

a)n(n+2013)

xét 2 tr hp.

tr hp 1:n là số lẻ 

=>n+2013 là số chẵn

=>n(n+2013) là số chẵn =>n(n+2013) chia hết cho 2.

tr hp 2:nlà số chẵn

=>n(n+2013) là số chẵn=> n(n+2013) chia hết cho 2.

b)M=21+22+23+24+....+220

M=2.1+2.2+2.4+2.8 +25.1+25.2+25.4+25.8+.......+217.1+217.2+217.4+217.8

M=2(1+2+4+8)+25(1+2+4+8)+....+217(1+2+4+8)

M=2.15+25.15+....+217.15

=>M chiia hết cho 5

Thần Thần
31 tháng 10 2018 lúc 11:13

M = 2+2+23+24+.....+220 chứng tỏ rằng M chia hết cho 5

Số số hạng của tổng là :

(20-1) : 1 +1 = 20 ( số hạng )

Ta ghép 4 số vào 1 nhóm , như vậy có số nhóm là :

20 : 4 = 5 ( nhóm )

Ta có :

M = 2+22+23+24+24+.....+220

     = ( 2 + 22+23+24)+.....+(217+218+219+220)

     = 2.(1+2+3+4)+.....+217.(1+2+3+4)

     = 2.10+....217.10

      = (2+...+217 ) . 10 chia hết cho 5

Vậy ta có điều phải chứng minh.