Bài 10: Tính chất chia hết của một tổng. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Như Bảo

Bài 1: chi A= m2 + m+1 với m thuộc N. Chứng tỏ rằng:

a) A không chia hết cho 2

b) A không chia hết cho 5

Bài 2: Cho P= 2+22+23+...+210

Chứng tỏ rằng:

a) P chia hết cho 3

b) P chia hết cho 31

Bài 3: cho Q=3+32+33+...+312

Chứng tỏ rằng:

a) Q chia hết cho 4

b) Q chia hết cho 10

c) Q chia hết cho 13

Akai Haruma
8 tháng 7 2018 lúc 11:18

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

Akai Haruma
8 tháng 7 2018 lúc 11:23

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

Akai Haruma
8 tháng 7 2018 lúc 11:29

Bài 3:

a,b) \(Q=3+3^2+3^3+...+3^{12}\)

\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)

\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)

Do đó \(Q\vdots 10; Q\vdots 4\)

c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)

\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)

\(=13(3+3^4+...+3^{10})\vdots 13\)

Ta có đpcm.

b)


Các câu hỏi tương tự
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
trương tuyết mai
Xem chi tiết
Kimano
Xem chi tiết
Đỗ Trang
Xem chi tiết
Ngọc Vũ
Xem chi tiết
Nguyễn Khánh My
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
đồ ngốc ahihi
Xem chi tiết