Cho tam giác ABC vuông tại A có AH là đường cao (H ∈ BC).Biết B H = 5 c m , C H = 6 c m . Gọi K là trung điểm của HC. Khẳng định nào sau đây là đúng?
A. HK > HB > AB
B. HK < AK < AB
C. AB > AC > BC
D. HK = KC > AC
cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Đặt BC=a, CA=b, AB=c, AH=h. cm tam giác có các cạnh a-h, b-c,h là 1 tam giác vuông
dùng Pitago đảo thử từng cặp 1 thôi:v
ta có: \(\left(b-c\right)^2+h^2=b^2+c^2-2bc+h^2\)(1)
vì tam giác ABC vuông ở A có đường cao AH nên \(a^2=b^2+c^2\)và\(AB.AB=AH.BC=2S\)hay\(b.c=a.h\)
\(\Rightarrow b^2+c^2-2bc+h^2=a^2-2ah+h^2=\left(a-h\right)^2\)
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết AB=6cm,AC=8cm a c/m tam giác ABC đồng dạng tam giác HBA b Tính AH,BC
a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)
Cho Tam giác ABC vuông tại A có đường cao AH ( H thuộc BC), kẻ HD vuông góc AC tại D ( D thuộc AC). a) C/m tam giác DAH đồng dạng Tam giác HAC. b) Gọi O là trung điểm AB, OC cắt AH, HD tại K và I. C/m HI= ID. c) C/m AD.AC=BH.HC d) C/m B, K, D thẳng hàng
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
Trong tam giác ABC vuông tại A có đường cao AH : AB = c, AC = b, BC = a, AH = h, BH = c', CH = b'
a) Tính h, b, c nếu biết b' = 36, c' = 64
b) Tính h, b, b', c' nếu biết a = 9, c = 6
a) Ta có:
\(h^2=b'.c'=36.64=2304\Rightarrow h=48\left(cm\right)\) (định lí 2)
\(b^2=a.b'=\left(b'+c'\right).b'=\left(36+64\right).3600\Rightarrow b=60\left(cm\right)\)(định lí 1)
\(c^2=a.c'=\left(b'+c'\right).c'=\left(36+64\right).64=6400\Rightarrow c=80\left(cm\right)\)
(định lí 1)
Vậy b = 60cm; c = 80cm; h=48
b) Ta có: \(c^2=a.c'\Leftrightarrow6^2=9.c'\Leftrightarrow c'=\dfrac{36}{9}=4\left(cm\right)\)
mà c' + b' = a \(\Rightarrow b'=a-c'=9-4=5\left(cm\right)\)
\(h^2=b'.c'=5.4=20\Rightarrow h=2\sqrt{5}\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có: \(b^2=a^2-c^2=9^2-6^2=45\Rightarrow b=3\sqrt{5}\left(cm\right)\)
Vậy h = \(2\sqrt{5}cm;b=3\sqrt{5}cm;\) c' = 4cm; b' = 5cm
Tam giác ABC cân tại A (A nhỏ 90 độ) có đường cao BE cắt đường cao BF tại H a)c/m tam giác ABE và tam giác ACF = nhau b)AH vuông BC c)gọi D là giao điểm của đường thẳng AB,BC c/m tam giác DEF cân
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có
AH chung
AF=AE
Do đó: ΔAFH=ΔAEH
Suy ra: \(\widehat{FAH}=\widehat{EAH}\)
hay AH là tia phân giác của góc BAC
mà ΔABC cân tại A
nên AH là đường cao
Xét tg ABE vuông tại E và tg ACF vuông tại F, có:
AB=AC(tg ABC cân tại A)
góc E=góc F(=90 độ)
góc BAE chung.
=>tg ABE=tg ACF.
b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có
AH chung.
AF=AE(2 cạnh tương ứng)
góc E=góc F.
=>tg AHF=tg AEH.
=>góc FAH=góc EAH.
=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.
Bài 6. Cho tam giác ABC vuông tại A (AB < AC) có đườn cao AH ( H thuộc BC). Vẽ đường tròn (A, AH). Từ B và C kẻ tiếp tuyến BM, CN tới (A, AH) (M, N là các tiếp điểm không nằm trên BC). Gọi K là giao điểm của HN và AC.
a) Chứng minh 4 điểm A, H, C, N cùng thuộc một đường tròn.
b) Chứng minh BM + CN = BC và M, A, N thẳng hàng.
c) Nối MC cắt (A, AH) tại P (P khác M). Chứng minh góc PKC = góc AMC
a: Xét tứ giác AHCN có
\(\widehat{AHC}+\widehat{ANC}=180^0\)
Do đó: AHCN là tứ giác nội tiếp
Cho tam giác ABC có AB = 6 cm ; AC = 4,5 cm ; BC = 7,5 cm a) chứng minh tam giác ABC vuông tại A b) Kẻ đường cao AH (H thuộc BC) tính BH, HC, AH và góc B,C của tam giác c) Tính diện tích tam giác ABC d) tìm vị trí điểm M để diện tích tam giác ABC bằng diện tích tam giác MBC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
Cho tam giác abc vuông tại A có Ah là đường cao. Biết AB = 6cm, BC = 10cm:
a) Giải tam giác ABC
b) Gọi D là hình chiếu của H lên AC. Tính AH, AD
c) Kẻ AE vuông góc BD tại E. Chứng minh AB = AC.tanBEH
Cho tam giác ABC cân tại A . Biết AB =AC=5cm , BC=8cm . Kẻ Ah vuông góc vs BC (H thuộc BC ) . a) Tính AH
b) Gọi D và E là chân đường vuông góc kẻ từ H đến AB và AC . C/m tam giác HDE cân .
c) C/m : DE//BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)